Journal of Textile Research ›› 2025, Vol. 46 ›› Issue (10): 30-38.doi: 10.13475/j.fzxb.20250200301

• Fiber Materials • Previous Articles     Next Articles

Preparation and performance of antibacterial nanofiber membrane loaded with magnolol

WU Leran1, WU Nihuan2, LI Lingeng1, ZHONG Yi1, CHEN Hongpeng2, TANG Nan1()   

  1. 1. School of Pharmacy, Guangdong Medical University, Dongguan, Guangdong 523808, China
    2. School of Biomedical Engineering, Guangdong Medical University, Dongguan, Guangdong 523808, China
  • Received:2025-02-05 Revised:2025-06-19 Online:2025-10-15 Published:2025-10-15
  • Contact: TANG Nan E-mail:tn6559@foxmail.com

Abstract:

Objective To overcome the limitations of traditional wound dressings such as poor antibacterial function and the need for frequent replacement, it was necessary to develop innovative multifunctional wound dressings. In this study, a nanofiber membrane loaded with magnolol (MAG) was fabricated using electrospinning technology. The membrane's morphology, wettability, water vapor transmission rate, mechanical properties, drug release, biocompatibility, hemocompatibility, antioxidant activity and antibacterial efficacy were systematically evaluated to explore its potential application as a wound dressing.

Method MAG was dissolved in varying mass ratios of zein/gelatin (Zein/Gel) solutions to prepare precursor solutions for electrospinning. Zein/Gel/MAG composite nanofiber membranes were then fabricated. The nanofibers' microstructure, chemical composition, and wettability were characterized using scanning electron microscopy, Fourier-transform infrared spectroscopy (FT-IR) and contact angle measurements. The effects of different Zein/Gel mass ratios on water vapor transmission rate, mechanical properties, MAG release, cytotoxicity, hemocompatibility, antioxidant activity and antibacterial efficacy were also investigated.

Results The fabricated Zein/Gel/MAG nanofiber membranes displayed a smooth surface without obvious bead formation or adhesion, and the nanofiber diameter decreased as the mass proportion of Gel in the spinning solution declined. FT-IR analysis confirmed the presence of Zein, Gel and MAG in the nanofibers. Water contact angle measurements indicated that the nanofiber membranes were hydrophobic, with increasing hydrophobicity accompanying the reduction in the mass proportion of Gel, reaching a maximum value of (116.50± 9.24)°. All nanofiber membranes demonstrated water vapor transmission rates above (2 527.42±262.94) g/(m2·d), reaching a maximum value of (2 805.50±65.17) g/(m2·d).The cumulative release of MAG from nanofiber membranes was strongly correlated with the mass proportion of Gel. Furthermore, the Zein/Gel/MAG nanofiber membranes exhibited no significant cytotoxicity to L929 cells and hemolysis rates of less than 2%. The scavenging rates for 1,1-diphenyl-2-picrylhydrazine free radical were in the range of(32.93±2.22)% to (53.03±8.32)%. The maximum widths of bacteriostatic circle for S.aureus and E.coli were (1.89±0.62) mm and (1.80±0.06) mm, respectively.

Conclusion The Zein/Gel/MAG nanofiber membranes were successfully prepared via electrospinning. These membranes exhibited excellent water vapor transmission rate, biocompatibility and hemocompatibility, as well as remarkable antioxidant activity. Specially, the obvious antibacterial efficacies against S.aureus and E.coli were observed. Therefore, the Zein/Gel/MAG nanofiber membrane had significant potential prospect for wound dressings.

Key words: magnolol, zein, gelatin, nanofiber membrane, antibacterial, wound dressing, electrospinning

CLC Number: 

  • TQ340.64

Fig.1

Morphology photo of Zein/Gel/MAG nanofiber membranes"

Fig.2

Histogram of nanofiber diameter distribution"

Tab.1

Viscosity value of spinning solution"

纺丝溶液 黏度/(mPa·s)
Zein/Gel/MAG-1 1 545.5
Zein/Gel/MAG-2 1 321.2
Zein/Gel/MAG-3
Zein/Gel/MAG-4
869.7
561.8

Fig.3

Infrared spectrogram of Gel, MAG, Zein and Zein/Gel/MAG-1"

Fig.4

Water contact angle of Zein/Gel/MAG nanofiber membranes"

Fig.5

Stress-strain curves of Zein/Gel/MAG nanofiber membranes"

Fig.6

MAG cumulative release curves from Zein/Gel/MAG nanofiber membranes"

Fig.7

Effect of Zein/Gel/MAG nanofiber membranes extract on viability of L929 cells"

Fig.8

Photographic image (a) and hemolysis rate (b) of Zein/Gel/MAG nanofiber membranes hemolysis"

Fig.9

Antioxidation of Zein/Gel/MAG nanofiber membranes"

Fig.10

Antibacterial effects of nanofiber membranes. (a) To S. aureus; (b) To E. coli"

[1] 李兢思, 李俊欣, 王思炜, 等. 浅析生物医用材料中伤口敷料的研究现状[J]. 生物医学工程与临床, 2023, 27(6): 818-823.
LI Jingsi, LI Junxin, WANG Siwei, et al. Brief analysis on the research status of wound dressings in biomedical materials[J]. Biomedical Engineering and Clinical Medicine, 2023, 27(6): 818-823.
[2] 顾雅楠, 桑胜南, 张玮. 浅谈棉质医用敷料的研究现状[J]. 中国纤检, 2022(7): 106-107.
GU Yanan, SANG Shengnan, ZHANG Wei. Brief discussion on the research status of cotton medicaldressings[J]. China Fiber Inspection, 2022(7): 106-107.
[3] 苏芳芳, 经渊, 宋立新, 等. 我国静电纺丝领域研究现状及其热点:基于CNKI数据库的可视化文献计量分析[J]. 东华大学学报(自然科学版), 2024, 50(1): 45-54.
SU Fangfang, JING Yuan, SONG Lixin, et al. Present situation and hotspot of electrospinning in China: visual bibliometric analysis based on CNKI database[J]. Journal of Donghua University (Natural Science), 2024, 50(1): 45-54.
[4] LI T, SUN M, WU S. State-of-the-art review of electrospun gelatin-based nanofiber dressings for wound healing applications[J]. Nanomaterials, 2022. DOI: 10.3390/nano12050784.
[5] 向金涛, 张从芬. 静电纺丝复合纳米纤维在生物医药的应用研究进展[J]. 天津化工, 2024, 38(1): 32-35.
XIANG Jintao, ZHANG Congfen. Research progress of electrostatic spinning composite nanofibers for biomedical applications[J]. Tianjin Chemical Industry, 2024, 38(1): 32-35.
[6] 杨海贞, 魏肃桀, 马闯, 等. 静电纺丝纳米纤维在药物输送领域的应用[J]. 现代纺织技术, 2024, 32(10): 56-67.
YANG Haizhen, WEI Sujie, MA Chuang, et al. Research on the application of electrospinning nanofibers in the field of drug delivery[J]. Advanced Textile Technology, 2024, 32(10): 56-67.
[7] 贾淑平, 曾睿, 但卫华, 等. 明胶-PVA复合纤维的研制及性能表征[J]. 高分子材料科学与工程, 2008(9): 131-134.
JIA Shuping, ZENG Rui, DAN Weihua, et al. Preparation and characterization of gelatin-PVA composite fiber[J]. Polymer Materials Science & Engineering, 2008(9): 131-134.
[8] LI H, ZHANG Z, CHEN J, et al. Effect of Cu2+ on the binding of catechins to zein through multi-spectral and in silico analyses[J]. Food Chemistry, 2025. DOI: 10.1016/j.foodchem.2024.141547.
[9] ZHOU W, JIANG Z, LIN X, et al. Preparation of MPN@Zein-PpIX membrane and its antibacterial properties[J]. ACS Omega, 2024, 9(27): 29274-29281.
doi: 10.1021/acsomega.4c00180 pmid: 39005804
[10] 刘松奇, 向慧, 吴京京, 等. 静电溶吹制备明胶/玉米醇溶蛋白/百里香酚纳米纤维及其表征[J]. 食品科学, 2023, 44(12): 50-59.
LIU Songqi, XIANG Hui, WU Jingjing, et al. Fabrication and characterization of elatin/zein/thymol nanofibers by electro-blown spinning[J]. Food Science, 2023, 44(12): 50-59.
[11] OU Q, MIAO Y, YANG F, et al. Zein/gelatin/nanohydroxyapatite nanofibrous scaffolds are biocompatible and promote osteogenic differentiation of human periodontal ligament stem cells[J]. Biomaterials Science, 2019, 7(5): 1973-1983.
doi: 10.1039/c8bm01653d pmid: 30820493
[12] WU X, LIU Z, HE S, et al. Development of an edible food packaging gelatin/zein based nanofiber film for the shelf-life extension of strawberries[J]. Food Chemistry, 2023. DOI: 10.1016/j.foodchem.2023.136652.
[13] OUYANG Y, TANG X, ZHAO Y, et al. Disruption of bacterial thiol-dependent redox homeostasis by magnolol and honokiol as an antibacterial strategy[J]. Antioxidants (Basel, Switzerland), 2023. DOI: 10.3390/antiox12061180.
[14] ZHOU Z, WANG Y, XING Y, et al. Magnolol inhibits high fructose-induced podocyte inflammation via downregulation of TKFC/Sp1/HDAC4/Notch1 activa-tion[J]. Pharmaceuticals (Basel, Switzerland), 2024. DOI: 10.3390/ph17111416.
[15] JIA B, HE J, ZHANG Y, et al. Pulmonary delivery of magnolol-loaded nanostructured lipid carriers for COPD treatment[J]. International Journal of Pharmaceutics, 2024. DOI: 10.1016/j.ijpharm.2024.124495.
[16] CHEN Y, HUANG K, DING X, et al. Magnolol inhibits growth and induces apoptosis in esophagus cancer KYSE-150 cell lines via the MAP kinase pathway[J]. Journal of Thoracic Disease, 2019, 11(7): 3030-3038.
doi: 10.21037/jtd.2019.07.46 pmid: 31463132
[17] 赵新哲, 王绍霞, 高晶, 等. 静电纺胶原/聚环氧乙烷纳米纤维膜的制备及其性能[J]. 纺织学报, 2021, 42(4): 33-41.
ZHAO Xinzhe, WANG Shaoxia, GAO Jing, et al. Preparation and properties of electrospun collagen/polyethylene oxide nanofiber membranes[J]. Journal of Textile Research, 2021, 42(4): 33-41.
doi: 10.1177/004051757204200107
[18] CHEN X, XIAO J, CAI J, et al. Phase separation behavior in zein-gelatin composite film and its modulation effects on retention and release of multiple bioactive compounds[J]. Food Hydrocolloids, 2020. DOI: 10.1016/j.foodhyd.2020.106105.
[19] ERSCH C, VAN DER LINDEN E, VENEMA P, et al. The microstructure and rheology of homogeneous and phase separated gelatine gels[J]. Food Hydrocolloids, 2016, 61: 311-317.
doi: 10.1016/j.foodhyd.2016.05.022
[20] DENG L, KANG X, LIU Y, et al. Characterization of gelatin/zein films fabricated by electrospinning vs solvent casting[J]. Food Hydrocolloids, 2018, 74: 324-332.
doi: 10.1016/j.foodhyd.2017.08.023
[21] 吴奇霞, 马建中, 张雷, 等. 明胶基静电纺丝复合纤维材料的研究进展[J]. 精细化工, 2023, 40(10): 2189-2199.
WU Qixia, MA Jianzhong, ZHANG Lei, et al. Research progress on gelatin-based electrospinning composite fiber materials[J]. Fine Chemicals, 2023, 40(10): 2189-2199.
[22] 李曼, 武丁胜, 魏安方, 等. 静电纺丝聚己内酯/明胶载姜黄素生物活性敷料的制备和性能[J]. 材料导报, 2022, 36(11): 233-239.
LI Man, WU Dingsheng, WEI Anfang, et al. Preparation and performance of electrospinning curcumin loaded polycaprolactone/gelatin bioactive wound dres-sing[J]. Materials Reports, 2022, 36(11): 233-239.
[23] JADA S, REDDY DOMA M, SINGH P P, et al. Design and synthesis of novel magnolol derivatives as potential antimicrobial and antiproliferative com-pounds[J]. European Journal of Medicinal Chemistry, 2012, 51: 35-41.
doi: 10.1016/j.ejmech.2011.12.039
[24] RADÜNZ M, MOTA CAMARGO T, DOS SANTOS HACKBART H C, et al. Characterization of ultrafine zein fibers incorporated with broccoli, kale, and cauliflower extracts by electrospinning[J]. Journal of the Science of Food and Agriculture, 2022, 102(10): 4210-4217.
doi: 10.1002/jsfa.v102.10
[25] LIU Y, ZHU T, LI J, et al. Magnolol hybrid nanofibrous mat with antibacterial, anti-inflammatory, and microvascularized properties for wound treat-ment[J]. Biomacromolecules, 2022, 23(3): 1124-1137.
doi: 10.1021/acs.biomac.1c01430
[26] 蒲传奋, 刘雯, 姜春伟, 等. 丁香酚/玉米醇溶蛋白纳米粒子膜的制备及表征[J]. 粮食与饲料工业, 2017(1): 35-39,47.
PU Chuanfen, LIU Wen, JIANG Chunwei, et al. Preparation and characterization of eugenol-zein nanoparticles film[J]. Cereal & Feed Industry, 2017(1): 35-39,47.
[27] DU M, LIU S, LAN N, et al. Electrospun PCL/gelatin/arbutin nanofiber membranes as potent reactive oxygen species scavengers to accelerate cutaneous wound healing[J]. Regen Biomater, 2024. DOI: 10.1093/rb/rbad114.
[28] YANG F, MIAO Y, WANG Y, et al. Electrospun zein/gelatin scaffold-enhanced cell attachment and growth of human periodontal ligament stem cells[J]. Mate-rials (Basel), 2017. DOI: 10.3390/ma10101168.
[29] 杨丽峰, 张叶, 李晓殿, 等. 厚朴酚影响增生性瘢痕成纤维细胞生物学功能的实验研究[J]. 中国美容整形外科杂志, 2022, 33(11): 668-671.
YANG Lifeng, ZHANG Ye, LI Xiaodian, et al. Experimental study on the effect of magnolol on the biological function of hypertrophic scar fibroblasts[J]. Chinese Journal of Aesthetic and Plastic Surgery, 2022, 33(11): 668-671.
[30] KOSTIĆ K, BRBORIĆ J, DELOGU G, et al. Antioxidant activity of natural phenols and derived hydroxylated biphenyls[J]. Molecules (Basel, Switzerland), 2023. DOI: 10.3390/molecules28062646.
[31] 刘锦渊, 刘晓丽, 夏文水. 负载丁香酚的改性纳米粒对玉米醇溶蛋白膜性能的影响[J]. 食品科学技术学报, 2023, 41(5): 123-135.
LIU Jinyuan, LIU Xiaoli, XIA Wenshui. Effects of modified nanoparticles loaded with eugenol on properties of zein films[J]. Journal of Food Science and Technology, 2023, 41(5): 123-135.
[1] XU Weihui, ZHU Tingting, WAN Ailan, MA Pibo. Development of antibacterial seamless yoga clothes and its thermal-wet comfort based on bionic structure [J]. Journal of Textile Research, 2025, 46(10): 187-196.
[2] MAO Ze, GAO Jun, LING Lei, WU Dingsheng, TAO Yun, ZHANG Chun, LI Shen, FENG Quan. Preparation and Cr6+ adsorption of polyacrylonitrile/polypyrrole nanofiber membrane [J]. Journal of Textile Research, 2025, 46(09): 57-65.
[3] FU Lin, QIAN Jianhua, SHAN Jiangyin, LIN Ling, WEI Mengrong, WENG Kexin, WU Xiaorui. Preparation and performance of silver nanowires/polyurethane nanofiber membrane flexible sensor [J]. Journal of Textile Research, 2025, 46(09): 74-83.
[4] WANG Haopeng, ZHANG Jiawen, NIU Yunwei, KE Qinfei, ZHAO Yi. Aromatic and antibacterial linalool/polyamide/zein micro-nano nonwovens with double envelope structure [J]. Journal of Textile Research, 2025, 46(09): 94-103.
[5] LIU Jian, PAN Shanshan, LIU Yongru, YIN Zhaosong, REN Kangjia, ZHAO Qinghao. Design and optimization of multi-tip serrated electrospinning nozzle [J]. Journal of Textile Research, 2025, 46(08): 217-225.
[6] MA Xiaoyuan, BAO Wei. Review and future perspectives of waterproof and moisture permeable nanofiber composite fabrics [J]. Journal of Textile Research, 2025, 46(08): 254-262.
[7] SHI Hu, WANG He, WANG Hongjie, PAN Xianmiao. Design of porous and crosslinked nanofiber-based supercapacitor separator [J]. Journal of Textile Research, 2025, 46(08): 45-52.
[8] XU Liya, WANG Zhen, YANG Hongjie, WANG Wei. Preparation and antibacterial property of zinc oxide-silver/bio-based polyamide 56 composite nanofiber membranes [J]. Journal of Textile Research, 2025, 46(07): 37-45.
[9] JIA Chennuowa, ZHANG Yong, ZHU Weiyan, LIU Sai, TANG Ning. Influence of core types on performance of conductive core-spun yarn prepared from polyacrylonitrile nanofibers [J]. Journal of Textile Research, 2025, 46(07): 87-95.
[10] WANG Chunxiang, LI Jiao, XIE Kaifang, XUE Hongkun, XU Guangbiao. Preparation and properties of gastrodia elata polysaccharide/polyvinyl alcohol antibacterial food-wrap membrane by electrospinning [J]. Journal of Textile Research, 2025, 46(06): 73-79.
[11] ZHANG Jiacheng, YU Ying, ZUO Yuxin, GU Zhiqing, TANG Tengfei, CHEN Hongli, LÜ Yong. Torsional sensing characteristics of polyacrylonitrile/MoS2 fiber membranes based on flexoelectric effect [J]. Journal of Textile Research, 2025, 46(06): 80-87.
[12] QIU Yue, YANG Xun, LI Hao, LI Haidong, WU Guozhong, ZHANG Caidan. Modification of polysuccinimide nano fibrous membrane and its dye adsorption properties [J]. Journal of Textile Research, 2025, 46(06): 88-95.
[13] CHEN Yajuan, GUO Hanyu, ZHANG Chentian, LI Xinxin, ZHANG Xueping. Preparation and hygroscopic properties of polyvinyl alcohol/sodium alginate/polyamide 66 composite hydrogel core-spun yarns [J]. Journal of Textile Research, 2025, 46(06): 103-110.
[14] LI Pengfei, LUO Yixin, ZHANG Zifan, LU Ning, CHEN Biling, XU Jianmei. Preparation and degradation performance of silk fibroin/chitosan/gelatin embolic microspheres [J]. Journal of Textile Research, 2025, 46(05): 116-124.
[15] SHI Xiaocong, CHEN Li, DU Xun. Preparation of alizarin-polylactic acid/collagen nanofiber membrane and its ammonia detection performance [J]. Journal of Textile Research, 2025, 46(05): 143-150.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!