纺织学报 ›› 2025, Vol. 46 ›› Issue (09): 94-103.doi: 10.13475/j.fzxb.20240500901

• 纤维材料 • 上一篇    下一篇

芳香抗菌双包络结构芳樟醇/聚酰胺/玉米醇溶蛋白微纳米非织造材料

王浩鹏1,2, 张佳文1,2, 牛云蔚3, 柯勤飞3, 赵奕1,2()   

  1. 1.东华大学 纺织学院, 上海 201620
    2.东华大学 产业用纺织品教育工程研究中心, 上海 201620
    3.上海应用技术大学 香料香精化妆品省部共建协同创新中心, 上海 201418
  • 收稿日期:2024-05-06 修回日期:2025-06-21 出版日期:2025-09-15 发布日期:2025-11-12
  • 通讯作者: 赵奕(1987—),女,副教授,博士。主要研究方向为非织造材料与工艺技术。E-mail:zhaoyi@dhu.edu.cn
  • 作者简介:王浩鹏(1997—),男,硕士。主要研究方向为非织造材料与工艺。
  • 基金资助:
    国家自然科学基金面上项目(22378057);上海市科委部分地方院校能力建设项目(19090503500)

Aromatic and antibacterial linalool/polyamide/zein micro-nano nonwovens with double envelope structure

WANG Haopeng1,2, ZHANG Jiawen1,2, NIU Yunwei3, KE Qinfei3, ZHAO Yi1,2()   

  1. 1. College of Textiles, Donghua University, Shanghai 201620, China
    2. Engineering Research Center of Technical Textile, Ministry of Education, Donghua University, Shanghai 201620, China
    3. Collaborative Innovation Center of Fragrance, Flavor and Cosmetics, Shanghai Institute of Technology, Shanghai 201418, China
  • Received:2024-05-06 Revised:2025-06-21 Published:2025-09-15 Online:2025-11-12

摘要: 针对芳樟醇易挥发、热稳定性差、无法自支撑等缺点限制了工程化应用效能的问题,提出纤维微胶囊一体结构的等级制包络稳态化策略。通过设计以聚酰胺-胺型树枝状大分子(PAMAM)为“分子微胶囊”支架,高效包络芳樟醇分子,利用分子动力学模拟验证PAMAM和芳樟醇的包络机制并研究最佳负载率(负载率为60.3%),将包覆芳樟醇的PAMAM与玉米醇溶蛋白共混纺丝形成等级制双包络结构的长效抗菌芳香微纳米非织造材料。结果表明:双包络稳态化策略可有效使得微纳米非织造材料对芳樟醇的负载率从2.61%提升到13.9%,其热稳定性提高15.38%;力学性能方面,其断裂强力为21.23 cN,断裂伸长率为6.25%,较包络前分别提高了90.52%和53.56%,抑菌圈提升为10.2 mm。

关键词: 芳香抗菌, 功能非织造材料, 静电纺微纳米材料, 芳樟醇, 聚酰胺-胺型树枝状分子

Abstract:

Objective Linalool, a primary constituent of lavender essential oil, is renowned for its versatile properties, including anti-inflammatory and anti-bacterial effects, as well as its sedative and hypnotic qualities. Additionally, it exhibits potent anti-oxidation capabilities. Owing to these beneficial attributes, linalool is extensively utilized in various health-related fields, such as sleep aids, antibacterial products, and anxiety relief. Its natural calming effects make it a valuable component in aromatherapy and other wellness practices.Despite these advantages, linalool's inherent volatility and poor thermal stability present significant challenges that can limit its application efficiency and effectiveness. Its tendency to evaporate quickly can lead to a loss of potency, while its instability at higher temperatures can affect its shelf life and reliability in various formulations. In order to overcome these drawbacks and harness linalool's full potential, a novel hierarchical envelope stabilization strategy for fiber microcapsules is introduced.

Method A sophisticated hierarchical envelope stabilization strategy for fiber microcapsules is presented, which is a groundbreaking approach in the field of encapsulation technology.Micro-nano composite nonwowens were developed, which was meticulously crafted using the electrospinning technique. Polyamide-amine dendrimers (carefully designed organic molecules known for their high branching and functionality) were chose as the main material for building molecular microcapsules. Through electrospinning technology, zein-coated molecular microcapsules are prepared to achieve the sustained release of linalool.

Results The inclusion mechanism of polyamide-amine dendrimers and linalool was verified by molecular dynamics simulation, and the optimal loading rate (64.9% for polyamide-amine dendrimers) was investigated.Besides, the long-active antibacterial aromatic micro-nano nowowens (the loading rate of linalool increased from 2.61% to 13.9%) was formed, and the mechanical properties (breaking strength 21.23 cN, elongation at break 6.25%) were improved by 90.52% and 53.56%, respectively.

Conclusion The micro-nano scaffolds developed through the electrospinning of zein and polyamide-amine dendrimers have significantly improved the storage stability of linalool when kept at room temperature.Encapsulating linalool within the fibrous matrices of the micro-nano nonwowen not only protected the compound from degradation but also prolonged its antibacterial efficacy over an extended period. This advancement in encapsulation technology has allowed linalool to retain its potent antibacterial activity, making it a viable candidate for a wide range of application in the field of medical dressing, the sustained release of linalool from these micro-nano scaffolds can provide a continuous antimicrobial effect, reducing the risk of infection in wound healing environments. Furthermore, in food packaging, the integration of linalool-containing microcapsules into packaging materials can serve as a natural preservative, prolonging the shelf life of perishable goods by inhibiting the growth of bacteria and fungi.

Key words: aromatic and antibacterial, functional nonwowen, electrospun micro-nano material, linalool, polyamide-amine dendrimer

中图分类号: 

  • TS174.1

图1

不同质量比PAMAM对芳樟醇的负载率"

图2

不同搅拌时间下PAMAM对芳樟醇的负载率"

图3

水溶液中的PAMAM包络芳樟醇"

图4

各分子之间的结合能"

图5

玉米醇溶蛋白非织造材料的扫描电镜照片"

图6

非织造材料的扫描电镜照片"

图7

不同试样的红外光谱图"

表1

材料的力学性能"

试样名称 断裂强力/cN 断裂伸长率/%
玉米醇溶蛋白 15.49±2.11 4.07±0.35
芳樟醇/玉米醇溶蛋白 11.19±1.65 2.70±0.22
芳樟醇/PAMAM/玉米醇溶蛋白 21.23±1.78 6.25±0.77

图8

纯玉米醇溶蛋白、芳樟醇/玉米醇溶蛋白和芳樟醇/PAMAM/玉米醇溶蛋白微纳米非织造材料的TGA曲线"

图9

纯玉米醇溶蛋白、芳樟醇/玉米醇溶蛋白和芳樟醇/PAMAM/玉米醇溶蛋白微纳米非织造材料的DTG曲线"

图10

试样抑制大肠埃希菌性能评价示意图"

图11

放置不同时间的试样抑制大肠埃希菌性能评价示意图"

图12

放置1周和4周试样的芳香性能"

[1] 孙锦程, 郝蕙玲. 不同缓释性芳樟醇制剂的活性效应比较[J]. 中国媒介生物学及控制杂志, 2009, 20(1): 42-44.
SUN Jincheng, HAO Huiling. The efficacy of different slow-releasing linalool formulation to Blattella germanica[J]. Chinese journal of vector blology and control, 2009, 20 (1): 42-44.
[2] 陈耕. 左旋芳樟醇的小鼠体内抗氧化及抗皮肤衰老活性研究[J]. 食品与机械, 2021, 37(2)169-172,185.
CHEN geng. The anti-oxidation activity of linalool and its effect on the skin aging[J]. Food & Machinery 2021, 37(2):169-172,185.
[3] KIM Min Gu, KIM Seong Man, MIN Jae Hong. Anti-inf lammatory effects of linalool on ovalbumin-induced pulmonary inflammation[J]. International lmmunophar Macology, 2019, 74:1567-1569.
[4] MALCOLM B J, TALLIAN K. Essential oil of lavender in anxiety disorders: ready for prime time[J]. Ment Health Clin, 2017, 7(4):147-155.
[5] 郭俸钰, 陈文学, 陈海明, 等. 芳樟醇对大肠埃希菌的抑菌作用机制[J]. 现代食品科技, 2020, 36(4):113-118.
GUO Fengyü, CHEN Wenxue, CHEN Haiming, et al. Antibacte rial mechanism of linalool against Escherichia coli[J]. Modern Food Science and Technology 2020, 36(4):113-118.
[6] 叶娇. 基于芳樟醇/β-环糊精静电纺微纳米纤维的制备及性能研究[D]. 上海: 东华大学, 2020:15-17.
YE Jiao. Preparation and properties of electrospinning micronanofiber based on linalool/β-cyclodextri[D]. Shanghai: Donghua University,2020:15-17.
[7] MUSCHIOLIKk G, Dickinson E. Double emulsions relevant to food systems: preparation, stability, and applications[J]. Comprehensive Reviews in Food Science & Food Safety, 2017, 16(3): 532-555.
[8] TONG W, SONG X, GAO C. Layer-by-layer assembly of microcapsules and their biomedical applications[J]. Chemical Society Reviews, 2012, 41(18): 6103-6124.
doi: 10.1039/c2cs35088b pmid: 22695830
[9] ARANTZAZU V, MARINA R, ANA B, et al. Recent trends in microencapsulation for smart and active innovative textile products[J]. Current Organic Chemistry, 2018, 22(12): 1237-1248.
doi: 10.2174/1385272822666180430130528
[10] MARTINS I M, BARREIRO M F, COELHO M, et al. Microencapsulation of essential oils with biodegradable polymeric carriers for cosmetic applications[J]. Chemical Engineering Journal, 2014, 245(6): 191-200.
doi: 10.1016/j.cej.2014.02.024
[11] GREEN B K, LOWELL S. Oil-containing microscopic capsules and method of making them: US,2800457A[P].1957-7-23.
[12] SANCHEZ-REINOSO Z, OSORIO C, HERRERA A. Effect of microencapsulation by spray drying oncocoa aroma compound and physicochemical characterisation of microencapsulates[J] Powder Technology, 2017, 318:110-119.
doi: 10.1016/j.powtec.2017.05.040
[13] ROSSI W, BONET-ARACIL M, BOU-BELDA, et al. Characterization of orange oil microcapsules for application in textiles[J]. IOP Conference Series:Materials Science and Engineering, 2012, 54(2): 022007.
[14] 卢亚会, 张维, 皇甫志杰. 壳聚糖聚氨酯双层壳香味微胶囊的研发[J]. 针织工业, 2018(4):40-43.
LU Yahui, ZHANG Wei, HUANGFU Zhijie. Development of chitosan and polyurethane double-shell fragrant micr ocapsule[J]. Knitting Industries, 2018(4):40-43.
[15] 王一萌, 阳建军, 崔贞超, 等. 正十六烷在芳香微胶囊中的应用研究[J]. 现代纺织技术, 2020, 28(3):67-71.
WANG Yimeng, YANG Jianjun, CUN Zhenchao, et al. Research on the application of n-hexadecane in aromatic microcapsules[J]. Advanced Textile Technology, 2020, 28(3):67-71.
[16] KENAWY E R, BOWLIN G L, MANSFIELD K, et al. Release of tetracycline hydrochloride from electrospun poly(ethyl ene-co-vinylacetate), poly (lactic acid),and a blend[J]. Journal of Controlled Release, 2002, 81(1/2): 57-64.
doi: 10.1016/S0168-3659(02)00041-X
[17] LU Y, SLOMBERG D L, SHAH A, et al. Nitric oxide-releasing amphiphilicpoly(amidoamine) (PAMAM) dendrimers as antibacterial agents[J]. Biomacromolecules, 2013, 14: 3589-3598.
doi: 10.1021/bm400961r
[18] SONUÇ KARABOĞA M N, SEZGINTÜRK M K. Determination of C-reactive rotein by PAMAM decorated ITO based disposable biosensing system: A new immunosensor design from an old molecule[J]. Talanta, 2018, 186: 162-168.
doi: 10.1016/j.talanta.2018.04.051
[19] XIONG Z, SHEN M, SHI X. Dendrimer-based strategies for cancer therapy: recent advances and future perspe ctives[J]. Sci China Mater, 2018, 61: 1387-1403.
doi: 10.1007/s40843-018-9271-4
[20] RAEMDONCK K, DEMEESTER J, DE SMEDT S. Advanced nanogel engineering for drug delivery[J]. Soft Matter, 2009, 5(4):707-715.
doi: 10.1039/B811923F
[21] 邓昌月. 基于分子动力学模拟研究β-环糊精对C10芳香分子的包合机理[D]. 合肥: 安徽农业大学, 2022:5-10.
DENG changyue. Study on the inclusion mechanism of β-cyclodextrin with C10 Aroma molecules based on molecular dynamics simulation[D]. Hefei: Anhui Agricultural University,2020:5-10.
[22] ZHOU L, LI J, YU B, et al. The drug loading behavior of PAMAM dendrimer: insights from experi mental and simulation study[J]. Science China(Technological Sciences), 2023, 66(4): 1129-1140.
[23] FAN X, WANG Y, ZHENG M, et al. Morphology engineering of protein fabrics for advanced and sustainable filtration[J]. Journal of Materials Chemistry A, 2018, 6(43): 21585-21595.
doi: 10.1039/C8TA08717B
[24] 鲁谦之. 多效空气净化用三维结构玉米蛋白非织造材料的制备与研究[D]. 上海: 东华大学, 2022:1-30.
LU qianzhi. Preperation and research of zein nonwovens with 3D structure for multi-efficiency air purific-ation[D]. Shanghai: Donghua University,2022:1-30.
[25] 郭胜利. 基于玉米醇溶蛋白的复合纤维敷料制备及抗菌性能[D]. 广州: 暨南大学, 2022:4-15.
GUO Shengli. Preparation and antibacterial properties of compound fiber dressing based on zein[D]. Guangzhou: Jinan University,2022:4-15.
[26] ALUIGI A, VINEIS C, TONIN C, et al. Wool keratin-based nanofibres for active filtration of air and water[J]. Journal of Biobased Materials and Bioenergy, 2009, 3(3): 311-319.
doi: 10.1166/jbmb.2009.1039
[1] 韩万里, 谢胜, 王新厚, 王玉栋. 熔喷气流场中的纤维运动模拟与分析[J]. 纺织学报, 2023, 44(01): 93-99.
[2] 欧康康, 祁琳雅, 侯怡君, 范天华, 齐琨, 王宝秀, 王华平. 纳米纤维基单向导湿抗菌敷料的制备及其性能[J]. 纺织学报, 2022, 43(06): 49-56.
[3] 王玉栋, 姬长春, 王新厚, 高晓平. 新型熔喷气流模头的设计与数值分析[J]. 纺织学报, 2021, 42(07): 95-100.
[4] 周铃, 靳向煜. 热气流固结纤维网串珠结构可控性及其结晶动力学[J]. 纺织学报, 2019, 40(08): 27-34.
[5] 姬长春, 张开源, 王玉栋, 王新厚. 熔喷三维气流场的数值计算与分析[J]. 纺织学报, 2019, 40(08): 175-180.
[6] 辛三法 王新厚 胡守忠. 微纳米纤维的熔喷制作工艺[J]. 纺织学报, 2015, 36(07): 7-11.
[7] 辛三法 王新厚 胡守忠. 双槽熔喷工艺中外沿长度对空气流场的影响[J]. 纺织学报, 2015, 36(04): 71-75.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!