纺织学报 ›› 2025, Vol. 46 ›› Issue (11): 137-146.doi: 10.13475/j.fzxb.20250100701

• 纺织工程 • 上一篇    下一篇

水可溃散砂质芯模设计及其在中空异形碳纤维复合材料成型中的应用

费旌源1, 徐乃库1(), 肖长发2   

  1. 1.天津工业大学 材料科学与工程学院, 天津 300387
    2.上海工程技术大学纤维材料研究中心, 上海 201620
  • 收稿日期:2025-01-06 修回日期:2025-05-06 出版日期:2025-11-15 发布日期:2025-11-15
  • 通讯作者: 徐乃库(1981—),男,教授,博士。主要研究方向为高分子功能纤维材料。E-mail:xunaiku@tiangong.edu.cn
  • 作者简介:费旌源(1998—),男,硕士生。主要研究方向为纤维复合材料成型。

Design of water collapsible sand mandrel and its application in forming of hollow special-shaped carbon fiber composites

FEI Jingyuan1, XU Naiku1(), XIAO Changfa2   

  1. 1. School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China
    2. Fiber Material Research Center, Shanghai University of Engineering Science, Shanghai 201620, China
  • Received:2025-01-06 Revised:2025-05-06 Published:2025-11-15 Online:2025-11-15

摘要:

为解决复杂形状芯模制造以及碳纤维复合材料成型后芯模脱模难题,以石英砂为原料,采用化学改性与湿法覆膜法制备覆膜砂,在石英砂表面构筑水溶性壳层。利用水溶性聚合物改性呋喃树脂后,将覆膜砂点黏合为遇水可溃散砂质芯模,设计特殊涂料整理砂质芯模表面,研究其作为模具在中空异形碳纤维复合材料成型中的适用性,并探究该砂质芯模的3D打印成型可行性。结果表明:相比石英砂,覆膜砂制得的砂质芯模的硬度和抗拉强度显著提升,分别达到54.5 HD、2.44 MPa,且遇水快速溃散,便于复合材料成型与脱模;经涂料整理后,芯模表面粗糙度由25.8 μm降至3.5 μm,可有效阻隔树脂的渗入与粘连,使碳纤维复合材料内表面粗糙度低至0.9 μm;改性黏合剂的黏度和表面张力分别为10.8 mPa·s、36.8 mN/m,可在3D打印机喷头中连续、稳定喷射,覆膜砂因合理的粒径分布和优异的流动性,可在3D打印机铺砂系统中铺砂,其壳层中氯化铝可催化黏合剂固化而将其黏合为特殊形状砂型,为3D打印砂质芯模成型碳纤维复合材料创造了条件。

关键词: 覆膜砂, 点黏合, 砂质芯模, 芯模, 石英砂, 碳纤维复合材料, 3D打印

Abstract:

Objective Formation of hollow special-shaped carbon fiber composites usually needs the support of mandrels. The methods currently used to prepare mandrels however involve complex process and long production period, but require complex equipment to complete the demolding after the formation of carbon fiber composites, which can easily cause damage to the final products. Consequently, the problems on mandrel manufacturing and demolding after the formation of carbon fiber composite are solved.
Method An aqueous solution of H2O2 was adopted to oxidize quartz sand, which was then coated with aluminum chloride and PVP-K30 using wet coating method. Since aluminum chloride in the shell an catalyze the curing of a modified adhesive, a mandrel was prepared by point-bonding the coated sand in a mold using the modified adhesive. In order to prepare the mandrel using 3D printing method, the 3D printability of the modified adhesive and coated sand was also investigated using a 3D printing inkjet system and a 3D printer. Two specially designed coatings were applied to the surface of the mandrel to improve the smoothness and prevent the penetration and adhesion of resin happening during the formation of carbon fiber composite materials. A hollow special-shaped carbon fiber composite was then prepared as an example with such a mandrel via vacuum bagging method. Thanks to the water-soluble shell of the coated sand, the mandrel was water-collapsible, so that the formed composite could be easily demolded in the presence of water.
Results Compared with quartz sand, the hardness and tensile strength of the mandrel prepared from the coated sand were significantly improved. The hardness increased from 44.3 to 54.5 HD, and the tensile strength increased from 1.85 to 2.44 MPa. Moreover, the mandrel could quickly collapse when exposed to water, facilitaing the formation and demolding of carbon fiber composite materials. After the mandrel was modified with the special coatings, its roughness decreased from 25.8 to 3.5 μm. The coatings simultaneously blocked the penetration and adhesion of resin during the formation of carbon fiber composite materials, and the inner surface roughness of the molded carbon fiber composite materials was as low as 0.9 μm. The viscosity and surface tension of the modified adhesive were 10.8 mPa·s and 36.8 mN/m, respectively, allowing it to be sprayed continuously and stably in the nozzle of 3D printer. The reasonable particle size and distribution and excellent flowability made the coated sand spread smoothly in the sand spreading system of 3D printer, and the AlCl3 in the shell of the coated sand catalyzed the curing of the modified adhesive, so that the coated sand could be bonded into a special-shaped sand mold.
Conclusion Oxidation modification and coating of aluminum chloride and PVP-K30 could repair the surface defects of quartz sand without affecting its flowability and particle size and distribution, which could lay the structural foundation for improving the strength of mandrel, and the water-soluble shell formed by aluminum chloride and PVP-K30 could make the mandrel water collapsible. High strength and hardness as well as good water collapsibility enabled the formation of hollow special-shaped carbon fiber composite materials with the mandrel as a supporter to be feasible. The suitable viscosity and surface tension of the modified adhesive as well as the excellent flowability and uniform particle size and distribution of the coated sand made the formation of 3D printed mandrel possible, which could provide complicated mandrels for the formation of carbon fiber composite materials.

Key words: coated sand, point bonding, sand mandrel, mandrel, quartz sand, carbon fiber composite material, 3D printing

中图分类号: 

  • TQ320.66

图1

砂样品的电镜照片"

图2

砂样品表面化学性质"

图3

砂样品粒径分布"

图4

砂样品回潮与流动性"

图5

覆膜砂与改性黏合剂的可3D打印性"

表1

砂质芯模回潮率与力学性能"

原材料 硬度/
HD
抗拉强度/
MPa
24 h回潮
率/%
24 h回潮后
抗拉强度/MPa
石英砂 44.3 1.85 0.18 0.82
覆膜砂 54.5 2.44 0.23 0.89

图6

砂质芯模水溃散性"

图7

砂质芯模的表面整理与应用"

[1] ZHANG J, LIN G, VAIDYA U, et al. Past, present and future prospective of global carbon fibre composite developments and applications[J]. Composites Part B: Engineering, 2023, 250: 110463.
doi: 10.1016/j.compositesb.2022.110463
[2] LI Y C. The development of carbon fiber epoxy resin composite material and its applications in aerospace[J]. Applied and Computational Engineering, 2023, 23(1): 75-80.
doi: 10.54254/2755-2721/23/20230614
[3] 李兴. 碳纤维复合材料异型管材的力学性能仿真与优化[D]. 上海: 东华大学, 2023:3-10.
LI Xing. Mechanical performance simulation and optimization of carbon fiber composite profiled tubular structures[D]. Shanghai: Donghua University, 2023:3-10.
[4] GHANBARI A, SEYEDIN S, NOFAR M, et al. Mechanical properties and foaming behavior of polypropylene/elastomer/recycled carbon fiber composites[J]. Polymer Composites, 2021, 42(7): 3482-3492.
doi: 10.1002/pc.v42.7
[5] LIN J Y, LIN M C, SHIU B C, et al. Novel composite planks made of shape memory polyurethane foaming material with two-step foaming process[J]. Polymers, 2022, 14(2): 275.
doi: 10.3390/polym14020275
[6] WANG S J, JANG J H, KIM J K, et al. Self-healing carbon fiber/epoxy laminates with particulate interlayers of a low-melting-point alloy[J]. Composites Part B: Engineering, 2024, 286: 111792.
doi: 10.1016/j.compositesb.2024.111792
[7] 严锋, 魏明晖, 杨帅. 气囊顶压碳纤维粘贴试验研究及工程应用[J]. 施工技术, 2018, 47(19): 151-153.
YAN Feng, WEI Minghui, YANG Shuai. The application and experiment research of balloon top pressure method in CFRP construction[J]. Construction Technology, 2018, 47(19): 151-153.
[8] HODDER K J, CHALATURNYK R J. Bridging additive manufacturing and sand casting: utilizing foundry sand[J]. Additive Manufacturing, 2019, 28: 649-660.
doi: 10.1016/j.addma.2019.06.008
[9] UPADHYAY M, SIVARUPAN T, EL MANSORI M. 3D printing for rapid sand casting: a review[J]. Journal of Manufacturing Processes, 2017, 29: 211-220.
doi: 10.1016/j.jmapro.2017.07.017
[10] FERRETTI P, SANTI G M, LEON-CARDENAS C, et al. Molds with advanced materials for carbon fiber manufacturing with 3D printing technology[J]. Polymers, 2021, 13(21): 3700.
doi: 10.3390/polym13213700
[11] SIVARUPAN T, BALASUBRAMANI N, SAXENA P, et al. A review on the progress and challenges of binder jet 3D printing of sand moulds for advanced casting[J]. Additive Manufacturing, 2021, 40: 101889.
doi: 10.1016/j.addma.2021.101889
[12] MOSTAFAEI A, ELLIOTT A M, BARNES J E, et al. Binder jet 3D printing: process parameters, materials, properties, modeling, and challenges[J]. Progress in Materials Science, 2021, 119: 100707.
doi: 10.1016/j.pmatsci.2020.100707
[13] MUNASIR, IMAM SUPARDI Z A, MASHADI, et al. Phase transition of SiO2 nanoparticles prepared from natural sand: the calcination temperature effect[J]. Journal of Physics: Conference Series, 2018, 1093: 012025.
doi: 10.1088/1742-6596/1093/1/012025
[14] ZHANG X, HU C B, LIN J J, et al. Fabrication of recyclable, superhydrophobic-superoleophilic quartz sand by facile two-step modification for oil-water separation[J]. Journal of Environmental Chemical Engineering, 2022, 10(1): 107019.
doi: 10.1016/j.jece.2021.107019
[15] RAJAGUKGUK J, SIMAMORA P, SITINJAK L, et al. NIR luminescence properties of Nd3+ ion doped glasses medium based on Huta Ginjang quartz sand[J]. Radiation Physics and Chemistry, 2025, 229: 112466.
doi: 10.1016/j.radphyschem.2024.112466
[16] YIN Z C, WANG Y L, WANG K, et al. The adsorption behavior of hydroxypropyl guar gum onto quartz sand[J]. Journal of Molecular Liquids, 2018, 258: 10-17.
doi: 10.1016/j.molliq.2018.02.105
[17] PAPEZHUK M V, IVANIN S N, YAKUPOV R P, et al. Obtaining polyvinylpyrrolidone fibers using the electroforming method with the inclusion of microcrystalline high-temperature phosphates[J]. International Journal of Molecular Sciences, 2024, 25(4): 2298.
doi: 10.3390/ijms25042298
[18] BAWAZIR W A, ALSULAMI Q A, KESHK S M A S. Augmentation in proton conductivity of crosslinked poly(vinyl alcohol) through the introduction of polyvinyl pyrrolidone[J]. Journal of Applied Polymer Science, 2023, 140(18): e53812.
doi: 10.1002/app.v140.18
[19] ALI I, MELIGI G A, AKL M R, et al. Influence of γ-ray irradiation doses on physicochemical properties of silver polystyrene polyvinyl pyrrolidone nano-composites[J]. Materials Chemistry and Physics, 2019, 226: 250-256.
doi: 10.1016/j.matchemphys.2018.12.084
[20] QI L, WENG X L, WEI B, et al. Effects of low-melting glass powder on the thermal stabilities of low infrared emissivity Al/polysiloxane coatings[J]. Progress in Organic Coatings, 2020, 142: 105579.
doi: 10.1016/j.porgcoat.2020.105579
[21] AN H, XIANG M, ABULIMITI B, et al. Spectral and dissociation characteristics of aluminum chloride in external electric field[J]. The European Physical Journal D, 2022, 76(5): 86.
doi: 10.1140/epjd/s10053-022-00412-8
[1] 高龙威, 蒋金华, 陈南梁, 邵慧奇. 经编双轴向碳纤维织物增强复合材料的冲击损伤特性[J]. 纺织学报, 2025, 46(11): 147-154.
[2] 黎靖康, 黄亮, 陈诗诗, 毕曙光, 冉建华, 唐加功. 苄基缩水甘油醚改性环氧类玻璃高分子材料的自修复与再加工性能[J]. 纺织学报, 2025, 46(04): 20-28.
[3] 李麒阳, 季诚昌, 郗欣甫, 孙以泽. 大尺寸异形结构芯模编织策略及纱线轨迹预测[J]. 纺织学报, 2023, 44(10): 188-195.
[4] 吕婧, 刘增伟, 程青青, 张学同. 芳纶纳米纤维气凝胶的研究进展[J]. 纺织学报, 2023, 44(06): 10-20.
[5] 顾力文, 阮艳雯, 李浩. 基于柔性选择性激光烧结3D打印技术的服装研发[J]. 纺织学报, 2023, 44(04): 154-164.
[6] 方周倩, 苗沛源, 金肖克, 祝成炎, 田伟. 碳纤维复合材料孔洞损伤超声波C扫描无损检测[J]. 纺织学报, 2022, 43(10): 71-76.
[7] 程燕婷, 孟家光, 薛涛, 支超. 3D打印纬平针面料的制备[J]. 纺织学报, 2022, 43(09): 115-119.
[8] 吴瑕, 姚菊明, 王琰, RIPON Das, JIRI Militky, MOHANAPRIYA Venkataraman, 祝国成. 碳纤维复合材料无人机叶片的仿真与分析[J]. 纺织学报, 2022, 43(08): 80-87.
[9] 姜雨淋, 王卉, 张克勤. 生物3D打印用丝素蛋白基凝胶墨水的研究进展[J]. 纺织学报, 2021, 42(11): 1-8.
[10] 杨露, 薛涛, 孟家光, 杨豆豆. 3D打印柔性服装面料的负离子功能整理及其性能[J]. 纺织学报, 2021, 42(08): 102-108.
[11] 宋星, 金肖克, 祝成炎, 蔡冯杰, 田伟. 玻璃纤维/光敏树脂复合材料的3D打印及其力学性能[J]. 纺织学报, 2021, 42(01): 73-77.
[12] 王曙东, 马倩, 王可, 瞿才新, 戚玉. 蚕丝蛋白/明胶复合水凝胶的结构与生物相容性[J]. 纺织学报, 2020, 41(11): 41-47.
[13] 张晓会, 杨曈, 马丕波. 基于3D打印的竹节结构中空单丝制备及其压缩性能[J]. 纺织学报, 2019, 40(12): 32-38.
[14] 宋星, 祝成炎, 蔡冯杰, 吕智宁, 田伟. 碱处理对涤纶/光敏树脂复合材料力学性能的影响[J]. 纺织学报, 2019, 40(07): 97-102.
[15] 蔡冯杰 祝成炎 田伟 吕智宁 申晓. 3D打印成型的玻璃纤维增强聚乳酸基复合材料[J]. 纺织学报, 2017, 38(10): 13-18.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!