纺织学报 ›› 2025, Vol. 46 ›› Issue (11): 211-220.doi: 10.13475/j.fzxb.20250500301

• 服装工程 • 上一篇    下一篇

基于摩擦纳米发电机原理的智能服装供能设计与优化

杜雨杭1, 侯东昱2(), 齐鹏飞3,4   

  1. 1.河北科技大学 艺术学院, 河北 石家庄 050018
    2.河北科技大学 纺织服装学院, 河北 石家庄 050018
    3.冶金自动化研究设计院有限公司, 北京 100071
    4.武汉大学 电气与自动化学院, 湖北 武汉 430072
  • 收稿日期:2025-05-06 修回日期:2025-08-08 出版日期:2025-11-15 发布日期:2025-11-15
  • 通讯作者: 侯东昱(1969—),女,教授,硕士。主要研究方向为服装结构设计、服装设计及理论。E-mail: 2046360@qq.com
  • 作者简介:杜雨杭(2000—),女,硕士生。主要研究方向为功能性服装设计。
  • 基金资助:
    河北省社会科学基金项目(HB24WH032)

Design and optimization of power supply for smart clothing based on triboelectric nanogenerator principles

DU Yuhang1, HOU Dongyu2(), QI Pengfei3,4   

  1. 1. College of Art, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018, China
    2. College of Textile and Apparel, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018, China
    3. Automation Research and Design Institute of Metallurgical Industry Co., Ltd., Beijing 100071, China
    4. College of Electrical Engineering and Automation, Wuhan University, Wuhan, Hubei 430074, China
  • Received:2025-05-06 Revised:2025-08-08 Published:2025-11-15 Online:2025-11-15

摘要:

为满足智能服装对能源供应轻便高效的需求,根据摩擦纳米发电机(TENG)在捕获低频能量方面的显著优势及种类多样、便于实现的特点,提出了一种基于TENG原理的智能服装自供能优化设计方法。基于有限元理论构建水平滑动式TENG供能装置的有限元数值仿真模型,研究摩擦层面积、运动方式、运动幅度、运动频率等因素对水平滑动式TENG输出性能的影响规律,确定优化结构参数;结合人体运动特征提出了TENG的最佳安装方案。结果表明,优化设计后的TENG在最佳安装方案下,单体最大输出功率为1.2 mW;针对不同尺寸等级的服装,组合后的最大输出功率可达31.2 mW,足以驱动常见人体生命特征传感器正常工作,为智能服装的供能设计与优化提供了有效解决方案。

关键词: 服装设计, 智能服装, 自供能装置, 摩擦纳米发电机, 有限元仿真

Abstract:

Objective Smart clothing, integrating fashion and technology, represents a crucial direction for the development of functional and workwear garments, necessitating lightweight and efficient self-powering solutions. Conventional self-powering approaches for smart clothing face limitations such as low energy generation efficiency and high environmental dependency, hindering their widespread adoption. Based on the working principle of triboelectic nanog-enerator (TENG), this study designs and optimizes the energy supply scheme for smart clothing with the aid of finite element simulation tools.
Method By evaluating the characteristics of different TENG working modes, the most suitable mode and optimal garment placement areas were selected. Through analysis of the TENG power generation mechanism and the establishment of a finite element simulation model for triboelectric material dynamics, the study simulated power generation performance under varying material surface areas, motion patterns, amplitudes, and frequencies. According to the data range of arm circumference sizes for different age groups, clothing is divided into three levels. The number of TENG arrangements with different side lengths and total power generation for each clothing grade were calculate. This facilitated the determination of optimal installation locations and configurations, thereby refining the design scheme.
Results Through a comparative analysis of the characteristics of the four TENG operation modes, the horizontal sliding-mode TENG was selected as the research subject by virtue of its superior suitability for clothing applications. By evaluating the properties of various candidate materials and their power generation efficiency, nylon and polytetrafluoroethylene (PTFE) were chosen as the triboelectric materials, while copper served as the electrode material. A finite element model with appropriate boundary conditions was established based on the TENG power generation principle. The location of TENGs in garment areas such as shoulders, underarms, and elbows was summarized, along with the corresponding movement characteristics of the wearer. The correspondence was established between the applicable area range and the area of TENG friction material, the amplitude of human body motion and the amplitude of TENG motion. Similarly, the correspondence was established between the applicable area range and the area of TENG friction material, the amplitude of human body motion and the amplitude of TENG motion. The relationship between the the intensity of human body movement and the frequency of TENG motion was studied using dynamic grid technology to conduct transient simulation of the model and study the impact of various factors on power generation efficiency. This study shows that at a motion frequency of 3 Hz, a single TENG installed in the elbow and side torso areas of smart clothing and moving in bilateral displacement mode is able to generate a maximum power of approximately 0.1, 0.6, and 1.2 mW at side lengths of 10, 15, and 20 mm, respectively. Among the three levels, TENGs with a side length of 20 mm were arranged in a checkerboard pattern on both sides of the body in suitable installation areas. 5 TENGs were connected in parallel on each side of the S-level, 8 on each side of the M-level, and 13 on each side of the L-level. The maximum output power reached 12.0, 19.2 and 31.2 mW, respectively, which is sufficient to power common human health monitoring sensors. Additionally, this configuration ensures a balance between wearer comfort and aesthetic appeal.
Conclusion Compared to conventional power supply methods, the TENG-based self-powering solution for smart clothing demonstrates superior power generation efficiency, adaptability, and wearability. Furthermore, employing simulation-based optimization eliminates the need for physical prototyping and modifications, reducing costs while improving efficiency. This approach offers a novel design and optimization strategy for smart clothing development. The application of this method to the field of smart clothing design will cause a huge positive impact on the design efficiency of smart clothing. Future experiments will be extended based on the design scheme proposed in this article in the subsequent research process, so as to verify the energy harvesting effect and to continuously optimize and improve the method.

Key words: apparel design, smart clothing, self-powered, triboelectric nanogenerator, finite element simulation

中图分类号: 

  • TS941.73

图1

TENG 4种工作模式原理图"

表1

TENG 4种工作模式对比"

模式 发电原理 发电效率 适合部位 舒适性
水平滑
动式
改变接触面积,
电荷分布变化
产生电流
★★★★ 腋下
肘部
手臂
裤腿内侧
★★★
垂直
接触
分离式
电荷转移
形成电势差,
驱动电荷流动
★★★ 鞋底
肘部
膝部
★★
单电
极式
利用环境或人体
作为另一电极
产生感应电荷
★★ 衣领
袖口
★★★★
独立
层式
介质层在
电极间移动,
屏蔽效应改变
电势差
★★★ 腰部
下摆
★★

图2

上衣各处TENG安装范围图"

图3

TENG原理模型及等效电路"

图4

水平滑动式TENG仿真模型"

表2

水平滑动式TENG仿真模型详细结构参数"

参数 符号 取值/mm
上/下极板厚度 δe 0.05
上/下极板宽度 We 10
上/下摩擦层厚度 δf 0.2
上/下摩擦层宽度 wf 10
间隙厚度 δg 0.1
运动域宽度 ws 36
运动域厚度 δs 0.5
模型宽度 w 40
模型高度 h 20
外空气域厚度 δa 2

图5

TENG仿真模型边界条件与网格设置过程"

图6

单边位移1个运动周期内TENG的电势分布"

图7

不同面积TENG开路电压及短路电流的变化"

图8

双边位移1个运动周期内TENG的电势分布"

图9

双边位移模式下不同运动幅度时开路电压及短路电流的变化情况"

图10

单边位移运动频率为3 Hz和1 Hz时TENG开路电压和短路电流的变化"

表3

不同情况下开路电压及短路电流峰值对比"

模型情况 开路电压
峰值/V
短路电流
峰值/nA
材料
宽度/mm
位移幅值/
mm
运动
频率/Hz
10 单边20 3 514 1.31
10 单边20 1 514 0.44
15 单边30 1 724 1.02
20 单边40 1 927 1.84
25 单边50 1 1 029 2.89
30 单边60 1 1 168 4.21
10 双边20 1 74 0.39
10 双边30 1 506 0.82
10 双边40 1 1 118 1.28

图11

负载阻值与输出功率的变化"

图12

TENG排布方式及位置选择"

图13

TENG安装位置示意图"

表4

不同边长的TENG在排布区域内的总功率"

等级/
区域
边长/mm
区域内不同边长TENG总功率/mW
10 mm 15 mm 20 mm
S 60 3.6 9.6 12.0
M 80 6.4 15.6 19.2
L 100 10.0 21.6 31.2

表5

常用人体生命特征传感器及其功耗情况"

传感器类型 监测生物特征 典型耗电功率/mW
光电心率传感器 心率 1~5
体温传感器 体温 0.5~2
加速度传感器 运动/步数 0.1~0.5
皮肤电导传感器 情绪/压力 0.5~2
[1] 沈雷, 桑盼盼. 不同领域技术下智能服装的发展现状及趋势[J]. 丝绸, 2019, 56(3): 45-53.
SHEN Lei, SANG Panpan. Research on development status and trend of smart clothing under technologies of different fields[J]. Journal of Silk, 2019, 56(3): 45-53.
[2] 李卉, 刘皓, 陈莉. 智能服装关键制备技术的研究进展[J]. 针织工业, 2021(12): 53-58.
LI Hui, LIU Hao, CHEN Li. Research progress of key manufacturing technologies of smart garments[J]. Knitting Industries, 2021(12): 53-58.
[3] 王子洵, 魏传辉, 吕天梅, 等. 自供电可穿戴智能纺织品研究进展[J]. 纺织工程学报, 2023, 12(6): 35-53.
WANG Zixun, WEI Chuanhui, LV Tianmei, et al. Research progress of self-powered smart wearable textiles[J]. Journal of Advanced Textile Engineering, 2023, 12(6): 35-53.
[4] NIU S M, WANG Z L. Theoretical systems of triboelectric nanogenerators[J]. Nano Energy, 2015, 14: 161-192.
doi: 10.1016/j.nanoen.2014.11.034
[5] 王宁, 龚维, 王宏志. 面向可穿戴电子产品的自供能摩擦电纺织品研究进展[J]. 纺织学报, 2024, 45(4):41-49.
WANG Ning, GONG Wei, WANG Hongzhi. Review on self-powered triboelectric textiles for wearable elec-tronics[J]. Journal of Textile Research, 2024, 45(4):41-49.
[6] 李辉, 王娇娜, 赵树宇, 等. 柔性全编织摩擦纳米发电织物的制备[J]. 纺织学报, 2018, 39(9): 34-38, 56.
LI Hui, WANG Jiaona, ZHAO Shuyu, et al. Preparation of flexible all-braiding triboelectric nanogenerator[J]. Journal of Textile Research, 2018, 39(9): 34-38, 56.
[7] KIM K N, CHUN J, KIM J W, et al. Highly stretchable 2D fabrics for wearable triboelectric nanogenerator under harsh environments[J]. ACS Nano, 2015, 9(6): 6394-6400.
doi: 10.1021/acsnano.5b02010 pmid: 26051679
[8] ZHOU T, ZHANG C, HAN C B, et al. Woven structured triboelectric nanogenerator for wearable devices[J]. ACS Applied Materials & Interfaces, 2014, 6(16): 14695-14701.
[9] ZHANG H L, YANG Y, HOU T C, et al. Triboelectric nanogenerator built inside clothes for self-powered glucose biosensors[J]. Nano Energy, 2013, 2(5): 1019-1024.
doi: 10.1016/j.nanoen.2013.03.024
[10] WANG S H, LIN L, WANG Z L. Triboelectric nanogenerators as self-powered active sensors[J]. Nano Energy, 2015, 11: 436-462.
doi: 10.1016/j.nanoen.2014.10.034
[11] 刘萍. 三介质直流摩擦纳米发电机的频率依赖问题及抑制策略[D]. 重庆: 西南大学, 2024:1-20.
LIU Ping. Suppression strategy for the frequency dependence problem in ternary dielectric direct current triboelectric nanogenerator[D]. Chongqing: Southwest University, 2024:1-20.
[12] SHI Q F, ZHANG Z X, CHEN T, et al. Minimalist and multi-functional human machine interface (HMI) using a flexible wearable triboelectric patch[J]. Nano Energy, 2019, 62: 355-366.
doi: 10.1016/j.nanoen.2019.05.033
[13] 桑盼盼, 沈雷. 功能性服装的作用及分类[J]. 服装学报, 2019, 4(2):112-116.
SANG Panpan, SHEN Lei. Review of the functions and categories of functional clothing[J]. Journal of Clothing Research, 2019, 4(2):112-116.
[14] 刘津池, 于淼, 王侠. 摩擦纳米发电机在织物基智能可穿戴中的应用[J]. 现代纺织技术, 2020, 28(4): 53-63.
LIU Jinchi, YU Miao, WANG Xia. Application of triboelectric nanogeneratorsin fabric-based intelligent wearable devices[J]. Advanced Textile Technology, 2020, 28(4): 53-63.
[15] 余静言. 摩擦纳米发电机在服装设计中的应用尝试[D]. 北京: 北京服装学院, 2018:2-30.
YU Jingyan. Application of friction nano-generator in clothing design[D]. Beijing: Beijing Institute of Clothing Technology, 2018:2-30.
[16] LI J R, XIE Z X, WANG Z H, et al. A triboelectric gait sensor system for human activity recognition and user identification[J]. Nano Energy, 2023, 112: 108473.
doi: 10.1016/j.nanoen.2023.108473
[17] WANG Z L. On Maxwell's displacement current for energy and sensors: the origin of nanogenerators[J]. Materials Today, 2017, 20(2): 74-82.
doi: 10.1016/j.mattod.2016.12.001
[18] WANG S H, LIN L, XIE Y N, et al. Sliding-triboelectric nanogenerators based on in-plane charge-separation mechanism[J]. Nano Letters, 2013, 13(5): 2226-2233.
doi: 10.1021/nl400738p pmid: 23581714
[19] 丁亚飞, 陈翔宇. 基于摩擦纳米发电机的可穿戴能源器件[J]. 物理学报, 2020, 69(17): 8-27.
DING Yafei, CHEN Xiangyu. Triboelectric nanogenerator based wearable energy harvesting devices[J]. Acta Physica Sinica, 2020, 69(17): 8-27.
[20] NIU S M, LIU Y, WANG S H, et al. Theory of sliding-mode triboelectric nanogenerators[J]. Advanced Materials, 2013, 25(43): 6184-6193.
doi: 10.1002/adma.v25.43
[21] GUO X, SHAO J J, WILLATZEN M, et al. Theoretical model and optimal output of a cylindrical triboelectric nanogenerator[J]. Nano Energy, 2022, 92: 106762.
doi: 10.1016/j.nanoen.2021.106762
[22] MCCARTY L S, WHITESIDES G M. Electrostatic charging due to separation of ions at interfaces: contact electrification of ionic electrets[J]. Angewandte Chemie (International Ed), 2008, 47(12): 2188-2207.
[23] WANG J, WU C S, DAI Y J, et al. Achieving ultrahigh triboelectric charge density for efficient energy harvesting[J]. Nature Communications, 2017, 8(1): 88.
doi: 10.1038/s41467-017-00131-4 pmid: 28729530
[24] 中国高血压防治指南修订委员会, 高血压联盟, 中国医疗保健国际交流促进会高血压病学分会. 中国高血压防治指南(2024年修订版)[J]. 中华高血压杂志, 2024, 32(7): 645.
Writing Group of 2018 Chinese Guidelines for the Management of Hypertension, WChinese Hypertension League, Hypertension Branch of China International Exchange and Promotive Association for Medical and Health Care. 2024 Chinese guidelines for the management of hypertension[J]. Chin J Hypertens, 2024, 32(7): 645.
[1] 李欣田, 周玄, 王展翾, 杜忠华, 徐立志. 层数与铺层方式对多层芳纶平纹织物抗侵彻性能的影响[J]. 纺织学报, 2025, 46(11): 126-136.
[2] 范书乐, 王朝晖, 刘欢欢, 叶勤文. 老年人跌倒伤害防护智能服装的研究现状与发展方向[J]. 纺织学报, 2025, 46(11): 255-263.
[3] 莫雁婷, 周莉, 陈思羽. 基于空间延展功能的菱形褶皱结构造型方法[J]. 纺织学报, 2025, 46(08): 191-198.
[4] 胡安妮, 王婕, 杨五世, 钟跃崎. 面向虚拟展示的三维扫描服装纸样生成[J]. 纺织学报, 2025, 46(08): 209-216.
[5] 吴雪杨, 徐启程, 单英浩, 林孝武, 刘晨铭. 集太阳能与电磁能量收集的人体可穿戴纳电网系统设计[J]. 纺织学报, 2025, 46(07): 202-208.
[6] 罗玉玲, 杨喜竹, 王星岚, 郑晓慧, 赵胜男, 常素芹. 以相变包为冷源的冷却服研究进展[J]. 纺织学报, 2025, 46(07): 253-261.
[7] 杨子田, 王诗琪, 雷梦洁. 马面裙坠感指数及结构解析[J]. 纺织学报, 2025, 46(07): 186-192.
[8] 于晓坤, 易萍, 谢冠婧, 蔡凌霄. 基于人体动力学的服装衣袖运动舒适性探究[J]. 纺织学报, 2025, 46(06): 196-202.
[9] 王旭, 李环宇, 付凡, 杨伟峰, 龚维. 镍掺杂液态金属复合纤维的连续制备及其应用[J]. 纺织学报, 2025, 46(06): 23-30.
[10] 于梦菲, 高文丽, 任婧, 曹雷涛, 彭若铉, 凌盛杰. 摩擦纳米发电机用皮芯结构纤维的制备及其性能[J]. 纺织学报, 2025, 46(05): 1-9.
[11] 刘烨, 王俊胜, 金星. 消防员个人防护装备用智能纺织品研究进展[J]. 纺织学报, 2025, 46(05): 105-115.
[12] 闫静, 王亚倩, 刘晶晶, 李好义, 杨卫民, 康卫民, 庄旭品, 程博闻. 熔融静电纺长丝纱的制备及其在摩擦纳米发电机中的应用[J]. 纺织学报, 2025, 46(05): 23-29.
[13] 陈枭, 赵继忠, 董凯. 基于接触起电效应的新型机电转化纤维性能提升策略[J]. 纺织学报, 2025, 46(05): 41-48.
[14] 陈馨蔚, 顾冰菲, 田佳莉, 周思凡, 刘瑜希, 刘金灵, 易洁伦, 孙玥. 基于参数化设计和数值模拟仿真技术的运动文胸版型优化[J]. 纺织学报, 2025, 46(04): 162-170.
[15] 王军, 殷晓玉, 周晓琪, 王思远. 智能矫姿服装设计[J]. 纺织学报, 2025, 46(04): 179-186.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!