纺织学报 ›› 2025, Vol. 46 ›› Issue (08): 120-126.doi: 10.13475/j.fzxb.20240501401

• 纺织工程 • 上一篇    下一篇

碳纤维增强水泥基灌浆料的制备及其性能

陈晴宇1, 陆春红1(), 张斌1, 晋义凯1, 黄琪帏1, 王超1,2, 丁彬3, 俞建勇3, 王先锋1   

  1. 1.东华大学 纺织学院, 上海 201620
    2.中国建筑第八工程局有限公司, 上海 200122
    3.东华大学 纺织科技创新中心, 上海 201620
  • 收稿日期:2024-05-09 修回日期:2025-04-14 出版日期:2025-08-15 发布日期:2025-08-15
  • 通讯作者: 陆春红(1989—),女,副教授,博士。主要研究方向为高性能纤维与智能纺织材料。E-mail:chlu@dhu.edu.cn
  • 作者简介:陈晴宇(1999—),男,硕士生。主要研究方向为碳纤维水泥基复合材料与非织造空气过滤材料。

Preparation and performance study of carbon fiber reinforced cement-based grouting material

CHEN Qingyu1, LU Chunhong1(), ZHANG Bin1, JIN Yikai1, HUANG Qiwei1, WANG Chao1,2, DING Bin3, YU Jianyong3, WANG Xianfeng1   

  1. 1. College of Textiles, Donghua University, Shanghai 201620, China
    2. China Construction Eighth Engineering Division Co., Ltd., Shanghai 200122, China
    3. Innovation Center for Textile Science and Technology, Donghua University, Shanghai 201620, China
  • Received:2024-05-09 Revised:2025-04-14 Published:2025-08-15 Online:2025-08-15

摘要: 水泥基灌浆料在长期使用后易收缩开裂,导致力学性能下降。为改善水泥基灌浆料的力学性能,使用聚丙烯酸钠(PAAS)分散液对碳纤维进行分散,并将分散后的碳纤维掺入水泥基灌浆料,研究碳纤维的添加量对灌浆料的工作性能、力学性能、微观结构的影响。结果表明:经PAAS分散液分散后的碳纤维能有效改善灌浆料的力学性能,其抗压强度和抗折强度分别在碳纤维的体积分数为0.3%与0.4%时达最佳;碳纤维体积分数为0.3%时,碳纤维灌浆料的初始与30 min流动度分别为350 mm与340 mm,初凝和终凝时间分别为120 min和205 min,1 d与3 d抗压强度分别为34.7、61.7 MPa,28 d抗压与抗折强度分别为94.6和25 MPa;碳纤维增强水泥基灌浆料的微观结构表明,碳纤维在水泥基体内有效分担灌浆料承受的压力,并发生断裂与滑移;综合考虑,水泥基灌浆料内碳纤维最佳体积分数为0.3%,该研究结果为碳纤维水泥基灌浆料的制备提供理论指导。

关键词: 碳纤维, 水泥基灌浆料, 聚丙烯酸钠, 力学性能, 微观结构, 复合材料

Abstract:

Objective The cement-based grouting material is widely used in secondary grouting, equipment installation, prefabricated construction, anchor bolt anchoring, and grouting repair. However, it has been found that the impact resistance and crack resistance of grouting material will gradually deteriorate after long-term use. Therefore, improving the crack resistance and toughness of grouting material is crucial for its applications in the engineering field.

Metheod The length of carbon fiber had a significant impact on the flowability of cement matrix, in order to reduce the influence of carbon fiber on the fluidity of grouting material, short cut carbon fiber with a length of 1 mm was used to reinforce cement-based grouting material. In order to improve the dispersion uniformity of carbon fiber in the cement matrix and the performance of grouting material, the carbon fiber was pre dispersed with Sodium polyacrylate (PAAS) before adding to grouting material. The proportion of water reducing agent was increased, and the preparation process was adjusted during the process of making the carbon fiber reinforced cement-based grouting material. After curing and shaping grouting material, the influence of carbon fiber on the flexural strength and compressive strength of grouting material at different ages was studied. SEM was used to study reinforcing mechanism of carbon fiber reinforced cement-based grouting material.

Results It was found that water reducing agent can effectively reduce the influence of carbon fiber and PAAS on the flowability of grouting material. but with the increase of carbon fiber content, the flowability of grouting material still gradually decreased. Meanwhile, with the increase of carbon fiber content, PAAS and water reducing agent enhanced the retarder effect on grouting material, resulting in an extension of its initial setting times. The research also revealed that the addition of carbon fiber significantly improved the 1-day, 3-day, 28-day compressive strength and 28-day flexural strength of grouting material, and the flexural and compressive strength of grouting material showed a trend of first increasing and then decreasing with the proportion increase of carbon fiber. When the carbon fiber content was low, uniformly dispersed carbon fiber effectively enhanced the cement matrix. However, when the carbon fiber content was too high, PAAS can't effectively disperse carbon fiber, and incompletely dispersed carbon fiber formed many clusters in the grouting material, resulting in a significant decrease in the mechanical strength of grouting material. In addition, its compressive and flexural strength respectively reached its peak when the volume fraction of carbon fiber was 0.4% and 0.3%. By observing the microstructure of grouting material with different proportion of carbon fiber, it was found that the increasing proportion of carbon fiber significantly reduced the number of cracks in the cured grout and delayed crack propagation. After adding carbon fiber to grouting material, the viscosity of the grouting material was increased, which played an effective connecting role on the cement matrix. The interface of carbon fiber observed in the microstructure indicated that carbon fiber had fractured and slid when subjected to internal forces in the grouting material, thus proving that carbon fiber shared the pressure borne by grouting material inside the material. Through studying the working performance, mechanical properties, and microstructure of the high-performance grouting material with carbon fiber, it was found that the comprehensive performance of the carbon fiber reinforced cement-based grouting material was optimal when the volume fraction of carbon fiber was kept at 0.3%.

Conclusion The experimental results show that the addition of carbon fiber disperses the pressure and bending force borne by grouting material, improves the cohesion of grouting material, and transforms brittle failure into flexible failure, ultimately significantly improving the compressive and flexural strength of grouting material.

Key words: carbon fiber, cement-based grouting material, sodium polyacrylate, mechanical property, microstructure, composite material

中图分类号: 

  • TS959

表1

碳纤维增强水泥基灌浆料参数"

编号 减水剂额外
添加量/
(kg·m-3)
PAAS密度/
(kg·m-3)
碳纤维密度/
(kg·m-3)
碳纤维占灌
浆料的体积
分数/%
CGM-0 0 0 0 0
CGM-1 1.11 0.70 1.79 0.1
CGM-2 1.71 0.88 3.58 0.2
CGM-3 2.32 1.06 5.37 0.3
CGM-4 2.93 1.24 7.16 0.4
CGM-5 3.53 1.42 8.95 0.5

图1

碳纤维增强水泥基灌浆料的制备流程"

表2

碳纤维用量对灌浆料流动度的影响"

试样
编号
初始流动
度/mm
30 min流动
度/mm
30 min流动度
变化率/%
CGM-0 380 340 10.5
CGM-1 355 330 7.0
CGM-2 355 335 5.6
CGM-3 350 340 2.9
CGM-4 345 340 1.5
CGM-5 310 310 0

图2

碳纤维增强水泥基灌浆料的凝结时间"

图3

碳纤维增强水泥基灌浆料的抗压强度"

表3

碳纤维增强水泥基灌浆料的抗折强度"

编号 28 d抗折
强度/MPa
相较于CGM-0的抗折
强度变化率/%
CGM-0 19.0 0
CGM-1 19.7 3.7
CGM-2 22.6 18.9
CGM-3 25.0 31.6
CGM-4 22.9 20.5
CGM-5 21.5 13.2

图4

碳纤维增强水泥基灌浆料的扫描电镜照片"

[1] 孙婕. 水泥基灌浆材料的制备及其性能研究[D]. 沈阳: 沈阳建筑大学, 2018: 1-2.
SUN Jie. Research on the preparation and properties of cement based grouting Material[D]. Shenyang: Shenyang Jianzhu University, 2018:1-2.
[2] 雷超. 加固用水泥基灌浆料性能研究[D]. 上海: 上海交通大学, 2018: 1-2.
LEI Chao. Research on properties of cementitious grout for strengthening[D]. Shanghai: Shanghai Jiaotong University, 2018: 1-2.
[3] 张勇, 田文丽, 马超然, 等. 我国水泥基灌浆材料研究进展[J]. 混凝土, 2018(6): 124-126, 131.
ZHANG Yong, TIAN Wenli, MA Chaoran, et al. Research progress of the cement-based grouting material[J] Concrete, 2018(6): 124-126, 131.
[4] GONG Ting, AHMED Amer H, CUROSU Iurie, et al. Tensile behavior of hybrid fiber reinforced composites made of strain-hardening cement-based composites(SHCC) and carbon textile[J]. Construction and Building Materials, 2020. DOI: 10.1016/j.conbuildmat.2020.120913.
[5] WANG Chuang, JIAO Gengsheng, LI Bingliang, et al. Dispersion of carbon fibers and conductivity of carbon-fiber-reinforced cement-based composites[J]. Ceramics International, 2017. DOI: 10.1016/j.ceramint.2017.08.041.
[6] ZHENG Yuanxun, ZHANG Peng, CAI Yingchun, et al. Cracking resistance and mechanical properties of basalt fibers reinforced cement-stabilized macadam[J]. Composites Part B: Engineering, 2019. DOI: 10.1016/j.compositesb.2018.11.115.
[7] 李双霞, 冯涛池, 陶小雷. 负温桥墩修补用聚乙烯醇纤维灌浆料的研究与应用[J]. 合成纤维, 2024, 53(4): 104-108.
LI Shuangxia, FENG Taochi, TAO Xiaolei. Research and application of polyvinyl alcohol fiber grouting material for repairing pier underNegative temperature[J]. Synthetic Fiber in China, 2024, 53(4): 104-108.
[8] 唐凤英, 张亚楠, 吴志鹏, 等. 钢纤维高强灌浆料受压循环力学性能分析[J]. 四川建筑, 2020, 40(4): 299-301.
TANG Fengying, ZHANG Yanan, WU Zhipeng, et al. Analysis of compressive cyclic mechanical properties of steel fiber high-strength grouting material[J]. Sichuan Architecture, 2020, 40(4): 299-301.
[9] GOUDA Omar, HASSANEIN Ahmed, YOUSSEF Tarik, et al. Stress-strain behaviour of masonry prisms constructed with glass fibre-reinforced grout[J]. Construction and Building Materials, 2021.DOI: 10.1016/j.conbuildmat.2020.120984.
[10] HUANG Yao, ELLINGFORD Christopher, BOWEN Chris, et al. Tailoring the electrical and thermal conductivity of multi-component and multi-phase polymer composites[J]. International Materials Reviews, 2020. DOI: 10.1080/09506608.2019.1582180.
[11] CHANG Huibin, JEFFREY Luo, PRABHAKARV Gulgunje, et al. Structural and functional fibers[J]. Annual Review of Materials Research, 2017. DOI: 10.1146/annurev-matsci-120116-114326.00000.
[12] 宋雪旸, 张岩, 徐成功, 等. 碳纤维/聚丙烯/聚乳酸增强复合材料的力学性能[J]. 纺织学报, 2021, 42(11): 84-88.
doi: 10.13475/j.fzxb.20201004005
SONG Xueyang, ZHANG Yan, XU Chenggong, et al. Mechanical properties of carbon fiber/polypropylene/polylactic acid reinforced composites[J]. Journal of Textile Research, 2021, 42(11): 84-88.
doi: 10.13475/j.fzxb.20201004005
[13] 谷元慧, 张典堂, 贾明皓, 等. 碳纤维增强编织复合材料圆管制备及其压缩性能[J]. 纺织学报, 2019, 40(7): 71-77.
GU Yuanhui, ZHANG Diantang, JIA Minghao, et al, Preparation and compressive properties of carbon fiberreinforced braided composite circular tubes[J]. Journal of Textile Research, 2019, 40(7): 71-77.
[14] JIANG Jianjun, YAO Xuming, XU Chumeng, et al. Influence of electrochemical oxidation of carbon fiber on the mechanical properties of carbon fiber/graphene oxide/epoxy composites[J]. Composites Part A: Applied Science and Manufacturing, 2017. DOI: 10.1016/j.compositesa.2017.02.004.
[15] HUANG Sheng, CHENG Xiaowei, GUO Xiaoyang, et al. Ethanol plasma-induced polymerization of carbon fiber surface for improving mechanical properties of carbon fiber-reinforced lightweight oil well cement[J]. Applied Surface Science, 2019. DOI: 10. 1016/j.apsusc.2019.DOI:10.1016/j.apsusc.2019.143765.
[16] 孙宇. 碳纤维水泥基复合材料力电和机敏性能研究[D]. 济南: 山东大学, 2024: 33-42.
SUN Yu. The mechanical-electrical-sensitive properties of carbon fiber reinforced cement-based composites[D]. Ji'nan: Shandong University, 2024: 33-42.
[17] 李国锋, 赵锡伟. 碳纤维对水泥砂浆力学性能和电磁屏蔽性能的影响[J]. 内蒙古公路与运输, 2023(3): 24-27.
LI Guofeng, ZHAO Xiwei. The influence of carbon fiber on the mechanical properties and electromagnetic shielding performance of cement mortar[J]. Highways & Transportation in Inner Mongolia, 2023(3): 24-27.
[18] WANG Lin, SHAO Guojian. Test research on flexural strength of soil-cement reinforced with carbon fibers[J]. Case Studies in Construction Materials, 2023. DOI: 10.1016/j.cscm.2023.e02280.
[19] 郑少鹏. 碳纤维对水泥砂浆性能的影响研究[D]. 广州: 广东工业大学, 2021: 62-63.
ZHENG Shaopeng. Study of effects of carbon fiber on cement mortar[D]. Guangzhou: Guangdong University of Technology, 2021: 62-63.
[20] 刘曹锐. 短切碳纤维混凝土的纤维分散性及力学性能研究[D]. 四川: 西南科技大学, 2023: 19-21.
LIU Caorui. A study on the dispersion and mechanical properties of short-cut carbon fiber reinforced concrete[D]. Sichuan: Southwest University of Science and Technology, 2023: 19-21.
[21] 陈华鑫, 郑睢宁, 何锐, 等. SAP吸释水行为及其对混凝土性能的影响机制综述[J]. 中国公路学报, 2024, 37(1): 1-19.
doi: 10.19721/j.cnki.1001-7372.2024.01.001
CHEN Huaxin, ZHENG Suining, HE Rui, et al. Water absorption-release behavior of SAP and influence mechanism on concrete properties: a review[J]. China Journal of Highway and Transport, 2024, 37(1): 1-19.
doi: 10.19721/j.cnki.1001-7372.2024.01.001
[22] 农泽清, 陶绍平, 潘美静, 等. 玄武岩纤维水泥基灌浆料力学性能研究[J]. 四川水泥, 2021(6): 77-78.
NONG Zeqing, TAO Shaoping, PAN Meijing, et al. A study on the mechanical properties of basalt fiber cement based grouting materials[J]. Sichuan Cement, 2021(6): 77-78.
[23] 肖文帅. 新型钢纤维灌浆料的试验研究[D]. 济南: 山东建筑大学, 2021: 49-50.
XIAO Wenshuai. Experimental study on new steel fiber grouting material[D]. Ji'nan: Shandong Ji'anzhu University, 2021: 49-50.
[1] 高闻语, 陈诚, 奚晓玮, 邓林红, 刘杨. 改性丝素蛋白纤维增强胶原基角膜修复材料的制备及其性能[J]. 纺织学报, 2025, 46(08): 1-9.
[2] 梁锋, 方沿, 张伟华, 唐余玲, 李双洋, 周建飞, 石碧. 基于金属-多酚网络的胶原蛋白基纤维制备及其力学性能[J]. 纺织学报, 2025, 46(08): 10-17.
[3] 岳航, 鹿超, 王春红, 李瀚宇. 基于主要化学成分的红麻与大麻拉伸强度预测[J]. 纺织学报, 2025, 46(08): 62-70.
[4] 刘宇祥, 乌婧, 徐锦龙, 谢锐敏, 王华平. 阳离子可染聚对苯二甲酸丙二醇酯预取向丝的制备及其性能[J]. 纺织学报, 2025, 46(07): 46-52.
[5] 张一帆, 安柳絮, 闫英杰, 邹齐, 刘晓志, 郭俊华, 陈利. 三维机织复合材料T型接头的拉伸性能[J]. 纺织学报, 2025, 46(07): 128-135.
[6] 朱雷, 李晓俊, 程春祖, 徐纪刚, 杜心宇. 四硼酸钠/单宁酸交联对海藻酸钙纤维结构与性能的影响[J]. 纺织学报, 2025, 46(07): 28-36.
[7] 张毅, 沈殷, 高金霞, 郁崇文. 棕榈纤维吸声复合材料的老化性能[J]. 纺织学报, 2025, 46(06): 127-134.
[8] 李沐芳, 魏琬茹, 李倩倩, 宋引男, 王栋, 罗梦颖. 碳纤维表面有机/无机纳米花的构筑及其对过氧化氢的检测[J]. 纺织学报, 2025, 46(06): 17-22.
[9] 黎靖康, 黄亮, 陈诗诗, 毕曙光, 冉建华, 唐加功. 苄基缩水甘油醚改性环氧类玻璃高分子材料的自修复与再加工性能[J]. 纺织学报, 2025, 46(04): 20-28.
[10] 吕丽华, 潘佳欣, 伍成龙. 废弃玉米芯颗粒的结构及其复合材料吸声性能[J]. 纺织学报, 2025, 46(04): 96-102.
[11] 李皎, 辛世纪, 陈利, 易伟, 陈小明. 双机器人分区针刺成形轨迹规划[J]. 纺织学报, 2025, 46(03): 207-215.
[12] 丁彩红, 贺少旭. 管状织物的六角形三维编织工艺设计[J]. 纺织学报, 2025, 46(03): 216-224.
[13] 李金键, 薛元, 陈宥融. 时序分布的段彩竹节纱及三通道转杯成纱工艺设计[J]. 纺织学报, 2025, 46(03): 72-81.
[14] 宋婉萌, 王宝弘, 孙宇, 杨家祥, 刘云, 王玉忠. 兼具力学性能与高效阻燃性能粘胶织物的制备及其性能[J]. 纺织学报, 2025, 46(02): 188-196.
[15] 杨露, 孟家光, 陈雨青, 支超. 基于废旧纺织品的湿度响应纤维素/聚氨酯复合材料的制备及其性能[J]. 纺织学报, 2025, 46(02): 26-34.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!