纺织学报 ›› 2025, Vol. 46 ›› Issue (11): 69-76.doi: 10.13475/j.fzxb.20250203201
GUO Mengyao, WU Jiaqing, WANG Ying(
)
摘要:
为丰富条带纺纱线品种,基于环锭纺纱方法,以静电纺膜条带为纱芯、棉纤维为外包层,制备内置条带的静电纺热塑性聚氨酯(TPU)膜条带/棉复合纱。从模型构建和纱线纺制2个方面,探讨TPU膜条带/棉复合纱全包覆结构关键参数。通过建立最小全包覆量结构模型,获得外包层线密度理论临界值;通过实验研究前罗拉处喂入须条宽度,获得外包层线密度实际临界值。以TPU纳米纤维膜条带为芯纱,分别采用不同线密度棉粗纱为包覆层,通过双粗纱喂入模式制备3种复合纱。结果表明:当外包层线密度是理论临界值的2倍以上时,可制备出全包覆结构复合纱;此条件下制备的TPU膜条带/棉复合纱无漏芯现象,其断裂强度为13.43 cN/tex,断裂伸长率为45%。内置TPU膜条带纺纱技术可解决纳米纤维膜应用中力学性能低的瓶颈问题,并赋予复合纱较好的弹性。
中图分类号:
| [1] | QIU Q H, CHEN S Y, LI Y P, et al. Functional nanofibers embedded into textiles for durable antibacterial properties[J]. Chemical Engineering Journal, 2020, 384: 123241. |
| [2] | MAO N, PENG H, QUAN Z Z, et al. Wettability control in tree structure-based 1D fiber assemblies for moisture wicking functionality[J]. ACS Applied Materials & Interfaces, 2019, 11(47):44682-44690. |
| [3] |
MAO N, CHEN W C, MENG J, et al. Enhanced electrochemical properties of hierarchically sheath-core aligned carbon nanofibers coated carbon fiber yarn electrode-based supercapacitor via polyaniline nanowire array modification[J]. Journal of Power Sources, 2018, 399: 406-413.
doi: 10.1016/j.jpowsour.2018.07.022 |
| [4] |
PANT H R, BAEK W I, NAM K T, et al. Fabrication of polymeric microfibers containing rice-like oligomeric hydrogel nanoparticles on their surface: a novel strategy in the electrospinning process[J]. Materials Letters, 2011, 65(10): 1441-1444.
doi: 10.1016/j.matlet.2011.02.029 |
| [5] | SHANG L L, WU Z P, LI X Y, et al. A breathable and highly impact-resistant shear-thickened fluid (STF) based TENG via hierarchical liquid-flow spinning for intelligent protection[J]. Nano Energy, 2023, 118: 108955. |
| [6] | TAN Y H, MA Y X, LIU J Y, et al. Breathable and impact-resistant shear thickening gel based three-dimensional woven fabric composites constructed by an efficient weaving strategy for wearable protective equipment[J]. Composites Part A: Applied Science and Manufacturing, 2024, 177: 107886. |
| [7] | 陈灿, 拖晓航, 王迎. 取向聚氨酯纳米纤维膜卷纱的制备及其力学性能[J]. 纺织学报, 2024, 45(8): 134-141. |
| CHEN Can, TUO Xiaohang, WANG Ying. Preparation and mechanical properties of yarns made from rolling oriented polyurethane nanofiber membranes[J]. Journal of Textile Research, 2024, 45(8): 134-141. | |
| [8] | 徐卫林, 夏治刚, 刘欣. 一种内置粉体材料的复合纱线成型方法:20181012642611[P]. 2018-07-17. |
| XU Weilin, XIA Zhigang, LIU Xin. A built-in powder material composite yarn molding method: 20181012642611[P]. 2018-07-17. | |
| [9] | 夏治刚, 付驰宇, 丁彩玲. 一种超短难纺纤维短流程成纱方法:2018101264556[P]. 2021-05-07. |
| XIA Zhigang, FU Chiyu, DING Cailing. An ultra-short hard-to-spin fiber short process yarn formation method: 2018101264556[P]. 2021-05-07. | |
| [10] | 钱栋霞. 柞绢包芯纱的研究[D]. 苏州: 苏州大学, 2005:1-20. |
| QIAN Dongxia. Research of oak silk covering yarn[D]. Suzhou: Soochow University, 2005:1-20. | |
| [11] | 郁崇文. 纺纱学[M]. 3版. 北京: 中国纺织出版社, 2019: 134. |
| YU Chongwen. Spinning science[M]. 3rd ed. Beijing: China Textile & Apparel Press, 2019: 134. | |
| [12] | 吴佳庆, 王迎, 郝新敏, 等. 长丝喂入位置对赛络纺包芯纱结构与性能影响[J]. 纺织学报, 2021, 42(8): 64-70. |
| WU Jiaqing, WANG Ying, HAO Xinmin, et al. Effect of filament feeding positions on structure and properties of siro-spinning core-spun yarns[J]. Journal of Textile Research, 2021, 42(8): 64-70. | |
| [13] | 张长乐, 蔡韵梅. 弹力包芯纱弹性与包覆效果的研究[J]. 棉纺织技术, 2000, 28(9): 5-9. |
| ZHANG Changle, CAI Yunmei. Research of elastic performance and covered effect on elastic core-spun yarn[J]. Cotton Textile Technology, 2000, 28(9): 5-9. | |
| [14] | 王府梅, 李京歌, 谢璇妍. PTT等弹性纤维的弹性回复性能比较[J]. 东华大学学报(自然科学版), 2004, 30(3): 90-92. |
| WANG Fumei, LI Jingge, XIE Xuanyan. Comparative study on elasticity of PTT and other elastic fibers[J]. Journal of Donghua University (Natural Science), 2004, 30(3): 90-92. |
| [1] | 尹文博, 叶帆, 杨瑞华. 基于包芯-包缠结构复合纱的锦纶/棉机织物服用性能[J]. 纺织学报, 2025, 46(11): 77-85. |
| [2] | 唐曾华, 李宏杰, 毕思伊, 邵光伟, 蒋金华, 陈南梁, 邵慧奇. 增强结构对碳纤维/热塑性聚氨酯柔性复合材料电磁屏蔽性能的影响[J]. 纺织学报, 2025, 46(10): 111-119. |
| [3] | 吴乐然, 吴霓欢, 李林耿, 钟意, 陈鸿鹏, 汤南. 负载厚朴酚的抗菌纳米纤维膜的制备及其性能[J]. 纺织学报, 2025, 46(10): 30-38. |
| [4] | 郑小虎, 杜思淇, 刘永青, 王健, 陈峰. 基于一维卷积神经网络的棉纱线质量预测[J]. 纺织学报, 2025, 46(09): 120-127. |
| [5] | 毛泽, 高俊, 凌磊, 武丁胜, 陶云, 张春, 李申, 凤权. 聚丙烯腈/聚吡咯纳米纤维膜的制备及其对铬离子的吸附性能[J]. 纺织学报, 2025, 46(09): 57-65. |
| [6] | 傅林, 钱建华, 单江音, 林灵, 卫梦蓉, 翁可欣, 吴晓睿. 银纳米线/聚氨酯纳米纤维膜柔性传感器制备及其性能[J]. 纺织学报, 2025, 46(09): 74-83. |
| [7] | 史蜜, 王文聪, 范雪荣, 高卫东. 聚乙烯醇聚合度和醇解度对棉浆纱性能的影响[J]. 纺织学报, 2025, 46(09): 181-187. |
| [8] | 马晓远, 包伟. 防水透湿纳米纤维复合织物研究现状及发展趋势[J]. 纺织学报, 2025, 46(08): 254-262. |
| [9] | 张利平, 郭羽晴, 丁博, 孙洁. 芳纶纳米纤维/热塑性聚氨酯复合微孔膜与可呼吸覆膜织物制备及其性能[J]. 纺织学报, 2025, 46(07): 19-27. |
| [10] | 林玉婷, 许仕林, 胡毅. 多色彩热塑性聚氨酯/聚丙烯腈纳米纤维纱线的制备及其性能[J]. 纺织学报, 2025, 46(07): 78-86. |
| [11] | 王春翔, 李姣, 解开放, 薛宏坤, 徐广标. 天麻多糖/聚乙烯醇静电纺抗菌保鲜膜的制备与性能[J]. 纺织学报, 2025, 46(06): 73-79. |
| [12] | 时晓聪, 陈莉, 杜迅. 茜素-聚乳酸/胶原蛋白纳米纤维膜的制备及其氨气检测性能[J]. 纺织学报, 2025, 46(05): 143-150. |
| [13] | 刘锦锋, 杜康存, 肖畅, 付少海, 张丽平. 多孔MXene/热塑性聚氨酯纤维的制备及其应力应变传感性能[J]. 纺织学报, 2025, 46(03): 41-48. |
| [14] | 张瑞成, 张文清, 吕哲, 许多, 刘可帅, 徐卫林. 基于自捻纺的嵌入式低扭矩复合纱性能分析[J]. 纺织学报, 2025, 46(02): 78-85. |
| [15] | 朱雪, 钱鑫, 郝梦圆, 张永刚. MXene/碳纳米纤维膜的静电纺丝-电泳沉积复合工艺制备及其电磁屏蔽性能[J]. 纺织学报, 2025, 46(01): 1-8. |
|
||