Journal of Textile Research ›› 2021, Vol. 42 ›› Issue (11): 84-88.doi: 10.13475/j.fzxb.20201004005

• Textile Engineering • Previous Articles     Next Articles

Mechanical properties of carbon fiber/polypropylene/polylactic acid reinforced composites

SONG Xueyang1, ZHANG Yan1, XU Chenggong2, WANG Ping1(), RUAN Fangtao2   

  1. 1. College of Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu 215000, China
    2. School of Textile and Garment, Anhui Polytechnic University, Wuhu, Anhui 241000, China
  • Received:2020-10-20 Revised:2021-08-11 Online:2021-11-15 Published:2021-11-29
  • Contact: WANG Ping E-mail:pingwang@suda.edu.cn

Abstract:

In order to reduce the content of polypropylene (PP) in carbon fiber/PP composites and reduce the environmental degradation pressure without changing the mechanical properties of carbon fiber/PP composites, the carbon fiber/PP composite resin system was doped with degradable polylactic acid (PLA) to form a blended resin system, and the carbon fiber reinforced blended resin composites were prepared by hot pressing. The effects of the mass ratio of PLA toPP blends on the impact, bending and tensile properties of the composites were investigated. The results show that with the increase of mass fraction of PLA in resin system, the impact and bending strength of carbon fiber composites decrease first and then increase, while the tensile strength increases first and then decreases. When the PLA mass fraction is 60%, the impact strength and flexural strength of the composites are the highest at 21.8 kJ/m2 and 112.5 MPa, and the tensile strength is 37.2 MPa, which has the optimal comprehensive physical and mechanical properties, which is similar to the mechanical properties of the composites without PLA.

Key words: carbon fiber, composite, hot pressing, polypropylene, polylactic acid, mechanical property

CLC Number: 

  • TB332

Tab.1

Melt index of PLA/PP blends with different PLA content"

PLA质量分数/% 0 20 40 60 80 100
熔融指数/(g·(10 min)-1) 7.7 8.2 18 44 55 >60

Fig.1

Manufacturing process of continuous carbon fiber reinforced composites"

Fig.2

Impact strength of composites with different PLA mass fraction"

Fig.3

Bending properties of composites with different PLA mass fraction. (a) Bending strength; (b) Bending stress and strain curves"

Fig.4

Tensile properties of composites with different PLA mass fraction. (a) Tensile strength; (b) Tensile stress and strain curves"

Fig.5

Tensile fracture surface morphology of composite with different PLA mass fraction (×40)"

[1] 阮芳涛, 施建, 徐珍珍, 等. 碳纤维增强树脂基复合材料的回收及其再利用研究进展[J]. 纺织学报, 2019, 40(6):153-158.
RUAN Fangtao, SHI Jian, XU Zhenzhen, et al. Research progress on recycling and reuse of carbon fiber reinforced resin matrix composites[J]. Journal of Textile Research, 2019, 40(6):153-158.
[2] 李思宇. 碳纤维增强聚丙烯复合材料的制备及其性能研究[D]. 武汉:武汉理工大学, 2018:11-12.
LI Siyu. Preparation and properties of carbon fiber reinforced polypropylene composites[D]. Wuhan: Wuhan University of Technology, 2018:11-12.
[3] 李健, 杨柳, 杨建思. 碳纤维增强聚乳酸复合材料的研究进展[J]. 合成纤维, 2012, 41(1):13-16.
LI Jian, YANG Liu, YANG Jiansi. Research progress of carbon fiber reinforced polylactic acid composites[J]. Synthetic Fiber in China, 2012, 41(1):13-16.
[4] 酒巧娜, 卢玉献. 聚乳酸/碳纤维增强复合材料的制备及性能研究[J]. 广州化工, 2015, 43(22):101-102,157.
JIU Qiaona, LU Yuxian. Preparation and properties of polylactic acid/carbon fiber composite materials[J]. Guangzhou Chemical Industry, 2015, 43(22):101-102,157.
[5] 袁海兵. 短切碳纤维增强聚丙烯复合材料的性能[J]. 合成树脂及塑料, 2018, 35(2):24-28.
YUAN Haibing. Performance of chopped carbon fiber reinforced polypropylene composites[J]. Synthetic Resin and Plastics, 2018, 35(2):24-28.
[6] 蔡冯杰, 祝成炎, 田伟, 等. 3D打印成型的玻璃纤维增强聚乳酸基复合材料[J]. 纺织学报, 2017, 38(10):13-18.
CAI Fengjie, ZHU Chengyan, TIAN Wei, et al. 3D printed glass fiber reinforced polylactic acid matrix composites[J]. Journal of Textile Research, 2017, 38(10):13-18.
[7] ARVIDSON S A, WONG K C, GORGA R E, et al. Structure, molecular orientation, and resultant mechanical properties in core/ sheath poly(lactic acid)/polypropylene composites[J]. Polymer, 2012, 53(3):791-800.
doi: 10.1016/j.polymer.2011.12.042
[8] 朱大勇, 辜婷, 于杰, 等. 环氧呋喃树脂反应性增容PLA/PBS共混体系的动态流变学表征[J]. 材料研究学报, 2018, 32(7):547-554.
doi: 10.11901/1005.3093.2017.658
ZHU Dayong, GU Ting, YU Jie, et al. Dynamic rheological characterization of epoxy furan resin reactive compatibilization PLA/PBS blend system[J]. Chinese Journal of Materials Research, 2018, 32(7) :547-554.
doi: 10.11901/1005.3093.2017.658
[9] 朱本铄, 裴鑫, 姜茜, 等. 基于MATLAB对PP/PLA复合材料薄膜均匀性评估方法[J]. 材料科学与工程学报, 2020, 38(1):117-122.
ZHU Benshuo, PEI Xin, JIANG Qian, et al. Evaluation method of PP/PLA composite film uniformity based on MATLAB[J]. Journal of Materials Science and Engineering, 2020, 38(1):117-122.
[10] 鲍子贺, 牛一凡, 欧阳俊杰. 混杂纤维复合材料力学性能及其低速冲击性能研究[J]. 塑料工业, 2018, 46(8):80-84,94.
BAO Zihe, NIU Yifan, OUYANG Junjie. Study on the mechanical properties and low-velocity impact properties of hybrid fiber composites[J]. Plastics Industry, 2018, 46(8):80-84,94.
[11] 杨光远, 欧阳纲, 李世健, 等. SEBS、PP与PLA的共混改性及加热不燃烧烟气降温应用[J]. 塑料工业, 2020, 48(7):29-33,126.
YANG Guangyuan, OUYANG Gang, LI Shijian, et al. Blending modification of SEBS, PP and PLA and heat-not-burn flue gas cooling application[J]. Plastics Industry, 2020, 48(7):29-33,126.
[12] 冯钠, 宋霞, 张志永, 等. 聚丙烯/聚乳酸共混体系的结构和性能[J]. 塑料科技, 2006(5):28-31.
FENG Na, SONG Xia, ZHANG Zhiyong, et al. Structure and properties of polypropylene/polylactic acid blend system[J]. Plastics Technology, 2006(5):28-31.
[13] DRZAL L T, RICH M J, KOENIG M F, et al. Adhesion of graphite fibers to epoxy matrices: II: the effect of fiber finish[J]. Journal of Adhesion, 2016, 16(2):133-152.
doi: 10.1080/00218468308074911
[14] DRZAL L T. Composite interphase characterization[J]. Sampe Journal, 1983, 19(5):7-13.
[1] LI Zhenzhen, ZHI Chao, YU Lingjie, ZHU Hai, DU Mingjuan. Preparation and properties of waste cotton regenerative aerogel/warp-knitted spacer fabric composites [J]. Journal of Textile Research, 2022, 43(01): 167-171.
[2] QIANG Rong, FENG Shuaibo, LI Wanying, YIN Linzhi, MA Qian, CHEN Bowen, CHEN Yi. Biomass-derived magnetic carbon composites towards microwave absorption [J]. Journal of Textile Research, 2022, 43(01): 21-27.
[3] MIN Xiaobao, PAN Zhijuan. Quality and performance of biomass fiber/pineapple leaf fiber multi-component blended yarn [J]. Journal of Textile Research, 2022, 43(01): 74-79.
[4] LÜ Lihua, LI Zhen, ZHANG Duoduo. Preparation and properties of sound absorbing composites based on use of waste straw/polycaprolactone [J]. Journal of Textile Research, 2022, 43(01): 28-35.
[5] LI Bo, FAN Wei, GAO Xingzhong, WANG Shujuan, LI Zhihu. Carbon fiber reinforced epoxy based vitrimer composite material closed-loop recycling [J]. Journal of Textile Research, 2022, 43(01): 15-20.
[6] FANG Yinchun, SUN Weihao. Research progress in flame retardant cellulose aerogel [J]. Journal of Textile Research, 2022, 43(01): 43-48.
[7] ZHU Feichao, ZHANG Yujing, ZHANG Qiang, YE Xiangyu, ZHANG Heng, WANG Lunhe, HUANG Ruijie, LIU Guojin, YU Bin. Research progress and prospect on biodegradable polylactic acid-based melt-blown nonwovens [J]. Journal of Textile Research, 2022, 43(01): 49-57.
[8] GAO Qiang, WANG Xiao, GUO Yajie, CHEN Ru, WEI Ju. Preparation and performance of cotton based Ti3C2Tx oil-water separation membrane [J]. Journal of Textile Research, 2022, 43(01): 172-177.
[9] WANG Songli, WANG Meilin, ZHOU Xiang, LIU Zunfeng. Research progress of artificial spider silk and imitation spider silk fiber [J]. Journal of Textile Research, 2021, 42(12): 174-179.
[10] WANG Shudong, DONG Qing, WANG Ke, MA Qian. Preparation and properties of polylactic acid nanofibrous membrane reinforced by reduced graphene oxide [J]. Journal of Textile Research, 2021, 42(12): 28-33.
[11] YUAN Qiong, QIU Haipeng, XIE Weijie, WANG Ling, WANG Xiaomeng, ZHANG Diantang, QIAN Kun. Mechanical properties and damage mechanism of three-dimensional six-directional braided SiCf/SiC composites [J]. Journal of Textile Research, 2021, 42(12): 81-89.
[12] CHEN Hainiao, TIAN Wei, JIN Xiaoke, ZHANG Hongxia, LI Yanqing, ZHU Chengyan. Analysis on cross-sectional structure of moso bamboo using three-dimensional microscope imaging [J]. Journal of Textile Research, 2021, 42(12): 49-54.
[13] WEI Xiaoling, LI Ruixue, QIN Zhuo, HU Xinrong, LIN Fusheng, LIU Lingshan, GONG Xiaozhou. Key technologies for formation of warp T-shape preforms [J]. Journal of Textile Research, 2021, 42(11): 51-55.
[14] PU Dandan, FU Yaqin. Preparation and sound insulation performance of polyester fabric/polyvinyl chloride-hollow glass microspheres composites [J]. Journal of Textile Research, 2021, 42(11): 77-83.
[15] WEI Fayun, YANG Fan, WANG Hailou, YU Bin, ZOU Xueshu, ZHANG Wei. Preparation and mechanical properties of cementitious composites reinforced by modified polyvinyl alcohol fiber [J]. Journal of Textile Research, 2021, 42(10): 53-60.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. JOURNAL OF TEXTILE RESEARCH, 2003, 24(06): 33 -34 .
[2] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(01): 1 -9 .
[3] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 101 -102 .
[4] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 111 -113 .
[5] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 116 -118 .
[6] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(03): 9 -10 .
[7] PAN Xu-wei;GU Xin-jian;HAN Yong-sheng;CHENG Yao-dong. Research on quick response of apparel supply chain for collaboration[J]. JOURNAL OF TEXTILE RESEARCH, 2006, 27(1): 54 -57 .
[8] HUANG Xiao-hua;SHEN Ding-quan. Degumming and dyeing of pineapple leaf fiber[J]. JOURNAL OF TEXTILE RESEARCH, 2006, 27(1): 75 -77 .
[9] GU Da-qiang;NIE Lin. Reinforcement fabric knitting machine for plastic pressure hose[J]. JOURNAL OF TEXTILE RESEARCH, 2006, 27(1): 86 -88 .
[10] WANG Ju-ping;YIN Jia-min;PENG Zhao-qing;ZHANG Feng. Ultrasonic wave aided enzymatic washing of reactive dyed fabrics[J]. JOURNAL OF TEXTILE RESEARCH, 2006, 27(1): 93 -95 .