纺织学报 ›› 2025, Vol. 46 ›› Issue (11): 61-68.doi: 10.13475/j.fzxb.20241005801

• 纤维材料 • 上一篇    下一篇

CuO 纳米纤维的制备及其在无酶葡萄糖传感器中的性能

张佃平1, 陈琪1, 徐登明1, 王祚1, 王昊2()   

  1. 1.宁夏大学 机械工程学院, 宁夏 银川 750021
    2.山推工程机械股份有限公司, 山东 济宁 272000
  • 收稿日期:2024-10-29 修回日期:2025-08-01 出版日期:2025-11-15 发布日期:2025-11-15
  • 通讯作者: 王昊(2000—),男,硕士。主要研究方向为功能材料开发与应用。E-mail:fywyzwh@163.com
  • 作者简介:张佃平(1981—),男,副教授,博士。主要研究方向为功能材料、专用设备研发。
  • 基金资助:
    宁夏重点研发计划(引才专项)项目(2023BSB03033);宁夏自然科学基金项目(2024AAC03047)

Preparation of CuO nanofibers and its performance in non-enzymatic glucose sensor

ZHANG Dianping1, CHEN Qi1, XU Dengming1, WANG Zuo1, WANG Hao2()   

  1. 1. School of Mechanical Engineering, Ningxia University, Yinchuan, Ningxia 750021, China
    2. Shantui Engineering Machinery Co., Ltd., Jining, Shandong 272000, China
  • Received:2024-10-29 Revised:2025-08-01 Published:2025-11-15 Online:2025-11-15

摘要:

为制备高比表面积铜材料以提高其对葡萄糖的电催化氧化性能,采用静电纺丝技术制备硝酸铜/聚乙烯吡咯烷酮(Cu(NO3)2/PVP)纳米纤维膜,再经煅烧工艺得到氧化铜纳米纤维(CuO-NFs)材料。通过扫描电子显微镜、X射线衍射仪及X射线光电子能谱仪等对CuO-NFs材料的表面形貌、组成和结构进行表征;并探究不同Cu含量的CuO-NFs对葡萄糖的电催化氧化性能的影响。结果表明:紧密堆积的氧化铜(CuO)颗粒组成的纳米纤维在煅烧后暴露出更多的活性位点,有利于电催化氧化过程中能接触更多的葡萄糖;CuO-NFs对葡萄糖的检测灵敏度达172.68 μA·L/(mmol·cm2),检测限(LOD)为0.53 μmol/L,响应时间仅为1 s,线性范围为1~20 000 μmol/L;CuO纳米纤维对于干扰物质有很好的抗干扰能力,且表现出良好的重现性和长期稳定性。

关键词: 静电纺丝, CuO材料, 葡萄糖, 电催化氧化, 纳米纤维, 传感器, 电极材料

Abstract:

Objective The continuous monitoring of physiological blood glucose levels is a cornerstone in the prevention, management, and diagnosis of diabetes mellitus, driving the demand for advanced glucose sensing technologies. Conventional enzymatic sensors, while effective, face limitations related to enzyme stability and cost. This study focuses on the development of a high-performance non-enzymatic electrochemical sensor, utilizing transition metal copper oxides. The objective is to engineer a sensing platform that leverages the intrinsic electrocatalytic properties of copper oxide nanostructures to achieve superior sensitivity, rapid response, and environmental sustainability, thereby offering a viable alternative to enzyme-based systems.
Method Copper oxide nanofibers were synthesized through a combination of electrospinning and subsequent high-temperature calcination. A precursor solution containing copper nitrate was electrospun to form polymeric nanofiber templates, which were then calcined to yield crystalline CuO nanofibers. These CuO-NFs were subsequently deposited onto a glassy carbon electrode and stabilized with a Nafion binder to construct the GCE/CuO-NFs/Nafion sensor. The morphological and structural characteristics of the synthesized nanofibers were meticulously analyzed using scanning electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy. The electrochemical performance, including electrocatalytic activity towards glucose oxidation, was evaluated in detail using cyclic voltammetry and amperometric techniques with a standard electrochemical workstation.
Results The characterization results confirmed the successful fabrication of interconnected, one-dimensional CuO nanofibers composed of tightly packed nanoparticles. This unique architecture, characterized by a high aspect ratio, creates a continuous, porous network. This network serves as a specialized conduit for efficient electron transport and exposes a significantly increased density of nanoscale active sites for glucose electrocatalysis. Electrochemical tests demonstrated that the sensor exhibited exceptional catalytic activity for the direct oxidation of glucose in alkaline media. Quantitative performance metrics revealed a high sensitivity of 172.68 μA·L/(mmol·cm2), attesting to its strong signal response per unit concentration change. The sensor also possessed a wide linear detection range from 1 μmol/L to 20 mmol/L, covering both physiological and pathological glucose levels, with a remarkably low detection limit of 0.53 μmol/L. Furthermore, comprehensive assessments confirmed excellent selectivity against common interfering substances (such as ascorbic acid, uric acid, and dopamine), alongside outstanding repeatability, reproducibility, and long-term operational stability over weeks.
Conclusion This research establishes that the structural and catalytic properties of electrospun copper oxide nanofibers can be effectively tuned by modulating precursor concentrations, such as that of Cu(NO3)2 in the spinning solution. The constructed GCE/CuO-NFs/Nafion non-enzymatic glucose sensor integrates the advantages of nanofiber morphology—enhanced charge transfer and abundant active sites—to deliver a comprehensive and robust sensing profile. It successfully combines high sensitivity, a broad linear range, and a low detection threshold with reliable anti-interference capability and sustained stability. These collective attributes underscore the sensor's high practical utility and measurement accuracy. Consequently, this work not only provides a viable synthesis strategy for advanced metal oxide nanomaterials but also proves the significant potential and application value of such non-enzymatic architectures in the next generation of affordable, stable, and high-performance glucose monitoring devices for diabetes care.

Key words: electrospinning, CuO material, glucose, electrocatalytic oxidation, nanofiber, sensor, electrode material

中图分类号: 

  • TQ150

图1

CuO-NFs的制备过程示意图"

图2

CuO纳米纤维表面形貌扫描电镜照片"

图3

CuO-NFs-2的XRD谱图和CuO的标准卡片"

图4

CuO-NFs-2的XPS谱图"

图5

Nafion/GCE和CuO-NFs-2/GCE的CV曲线"

图6

不同Cu含量CuO-NFs修饰电极的CV曲线"

图7

CuO-NFs-2/GCE电化学性能与扫描速率及葡萄糖浓度的关系"

图8

CuO-NFs-2/GCF的传感性能"

表1

构建的CuO-NFs-2与其它葡萄糖传感器的性能比较"

电极材料 线性范围/
(μmol·L-1)
检出限/
(μmol·L-1)
灵敏度/
(μA·L·
mmol-1·cm-2)
参考
文献
Cu/CNTs 20~3 000 10 314 [10]
Cu-DA 20~20 000 20 223.17 [11]
Cu-MOF 0.06~5 000 0.0105 89 [12]
Cu@OMC 10~1 000 1.2 795.3 [13]
Cu-NGr 0.01~100 0.01 4 846.94 [14]
Cu2O/Cu@NPC 10 000~20 000 8 4.6 [15]
CuO-NFs-2 1~20 000 0.53 172.68 本文

图9

CuO-NFs-2在0.15 mol/L NaOH溶液中对葡萄糖和不同干扰物质的响应电流"

表2

电极内重复性测试结果"

循环次数 1 2 3 4 5
响应电流/μA 12.5 12.4 12.3 12.5 12.4

表3

不同批次电极间重现性测试结果"

电极序号 1号 2号 3号 4号 5号
响应电流/μA 12.7 12.1 12.5 12.4 12.6

表4

电极的长期稳定性测试结果"

检测天数 第1天 第3天 第5天 第7天 第9天 第11天 第13天
电流保存
率/%
100.0 97.8 97.6 96.6 95.7 94.3 92.6
[1] 卢相月, 王延年, 李全忠. GM(1, 1)模型对不同范围血糖的预测性能分析[J]. 实用临床医药杂志, 2021, 25(9): 23-28, 36.
LU Xiangyue, WANG Yannian, LI Quanzhong. Analysis in performance of GM (1, 1) model in predicting blood glucose at different ranges[J]. Journal of Clinical Medicine in Practice, 2021, 25(9): 23-28, 36.
[2] YUE W, GUO Y J, WU J K, et al. A wireless, battery-free microneedle patch with light-cured swellable hydrogel for minimally-invasive glucose detection[J]. Nano Energy, 2024, 131: 110194.
doi: 10.1016/j.nanoen.2024.110194
[3] LAL R, MUGHERI A Q, SANGHA A A, et al. Investigation of anions effects on the morphology of NiO nanostructures and their non-enzymatic glucose sensing applications[J]. Science of Advanced Materials, 2021, 13(9): 1739-1747.
doi: 10.1166/sam.2021.4099
[4] BAN X, LI J M, SUN W W, et al. A highly sensitive non-enzymatic glucose electrode based on truncated octahedral CuO-modified Cu2O@Cu composite[J]. Microchemical Journal, 2024, 205: 111221.
doi: 10.1016/j.microc.2024.111221
[5] HASSAN M H, VYAS C, GRIEVE B, et al. Recent advances in enzymatic and non-enzymatic electrochemical glucose sensing[J]. Sensors, 2021, 21(14): 4672.
doi: 10.3390/s21144672
[6] GIZIŃSKI D, BRUDZISZ A, SANTOS J S, et al. Nanostructured anodic copper oxides as catalysts in electrochemical and photoelectrochemical reactions[J]. Catalysts, 2020, 10(11): 1338.
doi: 10.1016/j.talanta.2022.123926
[7] MARTINEZ-SAUCEDO G, CUEVAS-MUÑIZ F M, SANCHEZ-FRAGA R, et al. Cellulose microfluidic pH boosting on copper oxide non-enzymatic glucose sensor strip for neutral pH samples[J]. Talanta, 2023, 253: 123926.
[8] HODAEI H, ESMAEILI Z, ERFANI Y, et al. Preparation of biocompatible zein/gelatin/chitosan/PVA based nanofibers loaded with vitamin E-TPGS via dual-opposite electrospinning method[J]. Scientific Reports, 2024, 14(1): 23796.
doi: 10.1038/s41598-024-74865-9 pmid: 39394234
[9] SARI B, KAYNAK C. Parameters influencing electrospun nanofiber diameter of polylactide incorporated with cellulose nanofibrils and nano-crystals[J]. Journal of Thermoplastic Composite Materials, 2024, 37(11): 3570-3590.
doi: 10.1177/08927057241235650
[10] AMMARA S, SHAMAILA S, SHARIF R, et al. Uniform and homogeneous growth of copper nanoparticles on electrophoretically deposited carbon nanotubes electrode for nonenzymatic glucose sensor[J]. Acta Metallurgica Sinica (English Letters), 2016, 29(10): 889-894.
doi: 10.1007/s40195-016-0476-0
[11] VISWANATHAN P, PARK J, KANG D K, et al. Polydopamine-wrapped Cu/Cu(II) nano-heterostructures: an efficient electrocatalyst for non-enzymatic glucose detection[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 580: 123689.
doi: 10.1016/j.colsurfa.2019.123689
[12] SUN Y M, LI Y X, WANG N, et al. Copper-based metal-organic framework for non-enzymatic electrochemical detection of glucose[J]. Electroanalysis, 2018, 30(3): 474-478.
doi: 10.1002/elan.v30.3
[13] YANG H, GE Y K, WEN G, et al. Synthesis of copper nanoparticles in the ordered mesoporous carbon (Cu@OMC) for glucose detection[J]. Journal of Electronic Materials, 2022, 51(9): 5005-5014.
doi: 10.1007/s11664-022-09749-7
[14] SHABNAM L, FAISAL S N, ROY A K, et al. Doped graphene/Cu nanocomposite: a high sensitivity non-enzymatic glucose sensor for food[J]. Food Chemistry, 2017, 221: 751-759.
doi: S0308-8146(16)31956-2 pmid: 27979268
[15] XU Weiqin, HE Shan, LIN Chuncheng, et al. MOF-derived Cu2O/Cu NPs on N-doped porous carbon as a multifunctional sensor for mercury(Ⅱ) and glucose with wide detection range[J]. Chinese Journal of Structural Chemistry, 2020, 39(8): 1522-1530.
doi: 10.14102/j.cnki.0254-5861.2011-2644
[1] 梁治, 姬康瑞, 黎张成, 何钰, 王灿, 侯冲. 热致变色纤维膜的制备及其温度传感性能[J]. 纺织学报, 2025, 46(11): 1-8.
[2] 范书乐, 王朝晖, 刘欢欢, 叶勤文. 老年人跌倒伤害防护智能服装的研究现状与发展方向[J]. 纺织学报, 2025, 46(11): 255-263.
[3] 舒祖菊, 袁自钰, 周斐, 黄秀文, 王权, 房显龙, 曹美雪. 载姜黄素核壳结构纳米纤维膜的制备及其缓释性能[J]. 纺织学报, 2025, 46(11): 26-33.
[4] 刘飞, 刘璐, 郑智超, 刘俊宏, 吴德群, 蒋秋冉. 自黏型玉米醇溶蛋白基超细纤维膜的制备及其性能[J]. 纺织学报, 2025, 46(11): 34-42.
[5] 王文淑, 王建刚, 李瀚宇, 王春红, 谭晓璇, 王慧泉. 烷基壳聚糖/聚乙烯醇纳米纤维膜的制备及其止血性能[J]. 纺织学报, 2025, 46(11): 52-60.
[6] 郭梦瑶, 吴佳庆, 王迎. 全包覆结构聚氨酯膜条带/棉复合纱制备及其力学性能[J]. 纺织学报, 2025, 46(11): 69-76.
[7] 吴乐然, 吴霓欢, 李林耿, 钟意, 陈鸿鹏, 汤南. 负载厚朴酚的抗菌纳米纤维膜的制备及其性能[J]. 纺织学报, 2025, 46(10): 30-38.
[8] 张红霞, 齐芳汐, 赵静, 邢毅, 吕治家. 蜂巢结构介电层织物基传感器的一体成形及其性能[J]. 纺织学报, 2025, 46(10): 86-94.
[9] 唐春霞, 王一帆, 毛云山, 刘健, 付少海. 电磁屏蔽用纤维素基复合材料结构设计的研究进展[J]. 纺织学报, 2025, 46(09): 36-45.
[10] 毛泽, 高俊, 凌磊, 武丁胜, 陶云, 张春, 李申, 凤权. 聚丙烯腈/聚吡咯纳米纤维膜的制备及其对铬离子的吸附性能[J]. 纺织学报, 2025, 46(09): 57-65.
[11] 傅林, 钱建华, 单江音, 林灵, 卫梦蓉, 翁可欣, 吴晓睿. 银纳米线/聚氨酯纳米纤维膜柔性传感器制备及其性能[J]. 纺织学报, 2025, 46(09): 74-83.
[12] 孟子钰, 鲁文其, 张颂, 苗盛鸿, 黄富华, 彭来湖. 基于卡尔曼前馈拟合状态观测器的储纬器用永磁同步电动机霍尔位置检测方法[J]. 纺织学报, 2025, 46(09): 232-241.
[13] 权英, 张爱琴, 张曼, 刘淑强, 张钰晶. 基于三维编织结构的柔性应变传感器制备及其性能[J]. 纺织学报, 2025, 46(08): 136-144.
[14] 刘健, 潘山山, 刘泳汝, 尹兆松, 任康佳, 赵庆浩. 多尖端锯齿状静电纺丝喷头的设计及优化[J]. 纺织学报, 2025, 46(08): 217-225.
[15] 马晓远, 包伟. 防水透湿纳米纤维复合织物研究现状及发展趋势[J]. 纺织学报, 2025, 46(08): 254-262.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!