纺织学报 ›› 2025, Vol. 46 ›› Issue (10): 120-128.doi: 10.13475/j.fzxb.20241102701

• 纺织工程 • 上一篇    下一篇

机织间隔织物增强水泥基复合材料的制备及其力学性能

顾戚惠1, 阳知乾2, 王海楼1, 魏发云1, 张伟1()   

  1. 1.南通大学 纺织服装学院, 江苏 南通 226019
    2.江苏苏博特新材料股份有限公司重大基础设施工程材料全国重点实验室, 江苏 南京 211103
  • 收稿日期:2024-11-11 修回日期:2025-07-08 出版日期:2025-10-15 发布日期:2025-10-15
  • 通讯作者: 张伟(1981—),男,教授,博士。主要研究方向为功能性纤维及非织造材料开发。E-mail:zhangwei@ntu.edu.cn
  • 作者简介:顾戚惠(1998—),女,硕士。主要研究方向为织物改性混凝土。
  • 基金资助:
    江苏省重点研发计划项目(BE2023740);江苏省高等学校基础科学(自然科学)重大项目(24KJA540003)

Preparation of woven spacer fabric reinforced cementitious composites and its mechanical properties

GU Qihui1, YANG Zhiqian2, WANG Hailou1, WEI Fayun1, ZHANG Wei1()   

  1. 1. School of Textile and Clothing, Nantong University, Nantong, Jiangsu 226019, China
    2. State Key Laboratory of Materials for Major Infrastructure Engineering, Jiangsu Sobute New Materials Co., Ltd., Nanjing, Jiangsu 211103, China
  • Received:2024-11-11 Revised:2025-07-08 Published:2025-10-15 Online:2025-10-15

摘要: 为应对当前自然灾害和国际环境动荡对建筑材料安全性和抗冲击性产生的新要求,制备了机织间隔织物增强水泥基复合材料(TRC)。通过室温和100 ℃下的准静态三点弯曲实验及低速冲击实验,探究经纬方向、铺放位置、间隔纱高度对机织间隔织物增强水泥基复合材料的力学性能和失效破坏形式的影响规律。结果表明:将间隔纱高度较高的织物铺于底部时,有助于增强试件的力学性能,且失效后试件具有较好的完整性;玻璃纤维间隔织物可提高TRC的弯曲强度、韧性、耐温性;间隔纱高度越高,TRC的力学性能越好。其中,间隔纱高度为22 mm、间隔织物纬向设置、铺设于底部的TRC试件(TRC-Weft-BB22)室温下的抗弯强度和变形能分别比纯水泥(OPC)提高了274.4%和64.4倍;100 ℃温度下,TRC-Weft-BB22的纬向抗弯强度和变形能分别是OPC的3.5倍和172.3倍,强度较室温下仅损失5.4%;TRC-Weft-BB22在冲击3次后的强度仅损失了8.3%,平均吸收能量是OPC的9.32倍,试件完整性高。

关键词: 机织间隔织物, 水泥基复合材料, 弯曲性能, 冲击性能, 力学性能, 失效破坏形式

Abstract:

Objective Traditional steel and concrete materials are heavy and brittle in nature, having poor crack resistance. Therefore, the research and development of lightweight, reinforced and toughened building materials is of great significance. Woven spacer fabrics have the advantages of stable structure, design flexibility in cross-sectional structure, large internal space, and certain regularity. Woven spacer fabric-reinforced concrete has high bearing capacity, durability, and impact resistance. The weave structure can be adjusted according to needs and the reinforcement can be directed. In this study, 4 types of woven spacer fabrics with different spacer yarn heights were made using glass fibers, which were used to prepare woven spacer fabric-reinforced cement composite materials.

Method The 4 types of woven spacer fabrics were prepared with an "8"-shaped interlaced structure. The height of the spacer yarn was adjusted to control the spacing height. Spacers of different heights are placed between the upper and lower warps to control the spacing height. The spacer fabric was placed vertically in the mold and compounded with cement slurry by vibrating. The manufactured specimens were placed in a curing chamber at (20±2) ℃ and 95% relative humidity for 7 days. The mechanical properties and failure modes of the woven spacer fabric-reinforced cement-based composite were investigated through three-point bending tests at room temperature and 100 ℃, as well as impact tests to explore the effects of spacer fabric weaving direction, laying position, and spacing height on mechanical properties of the composites.

Results The woven spacer fabric enhances the bending performance of textile reinforced concretes (TRC), and the higher spacer yarn is beneficial for improving the bending performance. The peak load and deformation energy are more significantly improved in weft direction than warp direction. Placing the fabric in the middle of specimen is likely to cause delamination and interfacial layering of matrix, while placing it at the bottom of specimen increases the stiffness, peak load and deformation energy, thereby improving the overall integrity of specimen. The bridge-linking effect of spacer yarn is more obvious in the weft bending, which is related to the warp and weft arrangement of spacer yarns. At 100 ℃, the bending strength loss of ordinary Portland cement (OPC) is obvious due to water loss and high-temperature decomposition of hydrated calcium silicate. The glass fiber spacer fabric is beneficial for improving the thermal resistance of TRC and reducing the loss of strength and toughness at 100 ℃. The bending strength of TRC-Weft-BB3, TRC-Weft-BB10, TRC-Weft-BB18, and TRC-Weft-BB22 decreased by 26.1%, 11.0%, 14.4%, and 5.4%, respectively, and the bending strength loss of TRC decreased as the height of spacer yarn increased. The improvement of impact load of TRC by adding spacer fabric is limited, but the improvement of energy absorption is significant. At the same time, the TRC owns higher impact load and higher energy absorption with thicker spacer fabric. With repeated impact loading, the impact load value of the same TRC specimen gradually decreases, but the decrease in energy absorption is not obvious. Among them, the TRC-Weft-IB22 specimen after being impacted three times only had a strength loss of 8.3%, with an average energy absorption of 9.32 times that of OPC, and the integrity of the specimen was good.

Conclusion This paper prepared four types of woven spacer fabrics with different spacing heights, and the woven spacer fabric-reinforced cement composite materials were prepared. The woven spacer fabric-reinforced cement composite materials showed good bending strength and bending/impact toughness in bending test and impact test. The results show that the woven spacer fabric-reinforced cement composite materials have good mechanical properties and have good application prospects.

Key words: woven spacer fabric, cement composite, flexural property, impact property, mechanical property, failure and damage form

中图分类号: 

  • TU528

图1

机织间隔织物"

表1

间隔织物位于中间的TRC试件弯曲性能"

试件编号 峰值载
荷/N
峰值挠
度/mm
抗弯强度/
MPa
变形能/
(N·mm)
OPC 928.99 0.23 4.46 81.03
TRC-Warp-BM3 868.47 0.26 4.17 927.51
TRC-Warp-BM10 931.16 1.33 4.47 1 544.01
TRC-Warp-BM18 1 936.13 1.59 9.29 2 037.50
TRC-Warp-BM22 2 142.63 1.28 10.28 2 219.15
TRC-Weft-BM3 1 252.21 1.51 6.01 1 103.48
TRC-Weft-BM10 1 590.76 0.66 7.64 1 899.41
TRC-Weft-BM18 2 458.04 1.31 11.80 2 132.94
TRC-Weft-BM22 2 576.26 1.59 12.37 2 635.37

图2

间隔织物位于中间的TRC试件弯曲性能"

图3

间隔织物位于中间的TRC试件破坏模式"

图4

间隔织物位于底部的TRC试件弯曲性能"

表2

间隔织物位于底部的TRC试件弯曲性能"

试件 峰值载
荷/N
峰值挠
度/mm
抗弯强
度/MPa
变形能/
(N·mm)
OPC 928.99 0.23 4.46 81.03
TRC-Warp-BB3 1 078.52 0.53 5.18 728.23
TRC-Warp-BB10 1 874.22 0.92 8.99 2 327.84
TRC-Warp-BB18 2 423.56 1.07 11.63 2 413.51
TRC-Warp-BB22 2 724.65 1.24 13.08 3 216.11
TRC-Weft-BB3 2 313.28 0.88 11.10 1 600.19
TRC-Weft-BB10 2 870.56 2.25 13.78 3 897.65
TRC-Weft-BB18 3 330.49 1.30 15.99 4 151.77
TRC-Weft-BB22 3 479.94 1.23 16.70 5 299.32

图5

间隔织物位于底部的TRC弯曲过程"

图6

间隔织物位于底部的TRC纬向弯曲底部破坏图"

图7

100 ℃下间隔织物底部增强水泥试件的纬向弯曲性能"

图8

TRC冲击破坏图"

图9

OPC的冲击载荷-时间曲线"

图10

试样的冲击载荷与吸收能量对比图"

图11

试样的冲击载荷-时间曲线"

[1] 邓明科, 雷恒, 张雨顺, 等. 纤维织物增强高延性混凝土加固RC短柱抗剪性能试验研究[J]. 湖南大学学报(自然科学版), 2024, 51(1): 79-89.
DENG Mingke, LEI Heng, ZHANG Yushun, et al. Experimental study on shear performance of RC short columns strengthened by textile reinforced high ductile concrete[J]. Journal of Hunan University (Natural Sciences), 2024, 51(1): 79-89.
[2] 刘赛, 朱德举, 李安令. 织物增强混凝土的研究与应用进展[J]. 建筑科学与工程学报, 2017, 34(5): 134-146.
LIU Sai, ZHU Deju, LI Anling. Research and application progress of textile reinforced concrete[J]. Journal of Architecture and Civil Engineering, 2017, 34(5): 134-146.
[3] KOUTAS L N, TETTA Z, BOURNAS D A, et al. Strengthening of concrete structures with textile reinforced mortars: state-of-the-art review[J]. Journal of Composites for Construction, 2019, 23(1): 03118001.
doi: 10.1061/(ASCE)CC.1943-5614.0000882
[4] AWANI O, EL-MAADDAWY T, ISMAIL N. Fabric-reinforced cementitious matrix: a promising strengthening technique for concrete structures[J]. Construction and Building Materials, 2017, 132: 94-111.
doi: 10.1016/j.conbuildmat.2016.11.125
[5] 王飞, 欧忠文, 罗伟, 等. 织物增强混凝土的设计探究[J]. 合成纤维, 2022, 51(6): 43-46.
WANG Fei, OU Zhongwen, LUO Wei, et al. Design of fabric-reinforced concrete[J]. Synthetic Fibers in China, 2022, 51(6): 43-46.
[6] 田飞, 王丽莎. 三维机织间隔织物复合板材结构对其低速冲击性能的影响[J]. 当代化工研究, 2023(9): 26-28.
TIAN Fei, WANG Lisha. Influence of composite panels structure on low-speed impact performance[J]. Modern Chemical Research, 2023(9): 26-28.
[7] 孔维嘉, 董洁, 孙润军, 等. 三维机织间隔织物增强复合材料的研究进展[J]. 合成纤维, 2024, 53(7): 46-50, 56.
KONG Weijia, DONG Jie, SUN Runjun, et al. Research progress of three-dimensional woven spacer fabric reinforced composite materials[J]. Synthetic Fiber in China, 2024, 53(7): 46-50, 56.
[8] 牛丽, 刘青, 陈超余, 等. 仿生鳞片针织结构自供能传感织物的制备及其性能[J]. 纺织学报, 2023, 44(2): 135-142.
NIU Li, LIU Qing, CHEN Chaoyu, et al. Fabrication and performances of self-powering knitted sensing fabric with bionic scales[J]. Journal of Textile Research, 2023, 44(2): 135-142.
[9] 王晓雷, 缪旭红, 孙婉. 针织间隔导电织物的压力电阻传感性能[J]. 丝绸, 2020, 57(4): 17-21.
WANG Xiaolei, MIAO Xuhong, SUN Wan. Pressure resistance sensing properties of knitted spacer conductive fabrics[J]. Journal of Silk, 2020, 57(4): 17-21.
[10] 孙欣欣, 朱娜, 付国华, 等. 纺织非织造布生产技术研究进展[J]. 当代化工, 2024, 53(9): 2243-2246, 2257.
SUN Xinxin, ZHU Na, FU Guohua, et al. Research progress in production technology of spunbonded nonwovens[J]. Contemporary Chemical Industry, 2024, 53(9): 2243-2246, 2257.
[11] MA X T, KUANG X J, HE H J, et al. Mechanical performance of cementitious composites reinforced with weft-knitted spacer fabrics under static flexural and impact loading[J]. Construction and Building Materials, 2023, 384: 131376.
doi: 10.1016/j.conbuildmat.2023.131376
[12] 方薇, 王艺伟, 王骄, 等. 带齿经编格栅拉拔试验研究[J]. 工业建筑, 2023, 53(S2): 526-530.
FANG Wei, WANG Yiwei, WANG Jiao, et al. Experimental study on drawing of toothed warp knitting grid[J]. Industrial Construction, 2023, 53(S2): 526-530.
[13] 邓朗妮, 杨洲, 钟锰军, 等. FRP网格增强ECC加固钢筋混凝土梁裂缝研究[J/OL]. 建筑结构, 2024, 10(24): 1-8. http://kns.cnki.net/kcms/detail/11.2833.TU.20240402.1114.002.html.
DENG Langni, YANG Zhou, ZHONG Mengjun, et al. Research on cracks in reinforced concrete beams reinforced by FRP grid reinforced ECC[J/OL]. Building Structures, 2024, 10(24): 1-8. http://kns.cnki.net/kcms/detail/11.2833.TU.20240402.1114.002.html.
[14] 顾平. 织物组织与结构学[M]. 上海: 东华大学出版社, 2010: 1-20.
GU Ping. Fabric weaves and structures[M]. Shanghai: Donghua University Press, 2009: 1-20.
[15] 惠雷. 三维织物增强活性粉末混凝土薄板及其抗冲切性能试验研究[D]. 镇江: 江苏大学, 2016: 1-30.
HUI Lei. Experimental study on three-dimensional fabric reinforced reactive powder concrete sheet and its punching shear resistance[D]. Zhenjiang: Jiangsu University, 2016: 1-30.
[16] 杜子林. 预定形弯曲柱纱三维机织间隔复合材料的制备及其力学性能研究[D]. 上海: 东华大学, 2023: 1-11.
DU Zilin. Preparation and mechanical properties of three-dimensional woven spacer composites for pre-shaped bent column yarn[D]. Shanghai: Donghua University, 2023: 1-11.
[17] 景波, 丁辛, 周祝林. 机织间隔织物柱纱高度的确定[J]. 东华大学学报(自然科学版), 2012, 38(1): 31-33.
JING Bo, DING Xin, ZHOU Zhulin. Determination of pile yarn height of the woven sandwich fabric[J]. Journal of Donghua University (Natural Science), 2012, 38(1): 31-33.
[18] 金浏, 张仁波, 杜修力, 等. 温度对混凝土结构力学性能影响的研究进展[J]. 土木工程, 2021, 54(3): 1-18.
JIN Liu, ZHANG Renbo, DU Xiuli, et al. Research progress on the effect of temperature on mechanical properties of concrete structures[J]. Civil Engineering, 2021, 54(3): 1-18.
[19] 瑚佩, 姜勇刚, 张忠明, 等. 耐高温、高强度隔热复合材料研究进展[J]. 材料导报, 2020, 34(7): 7082-7090.
HU Pei, JIANG Yonggang, ZHANG Zhongming, et al. Research progress on high-temperature insulation composites with high mechanical property[J]. Materials Reports, 2020, 34(7): 7082-7090.
[1] 高敏, 程春祖, 徐中凯, 赵庆波, 张东, 代欣欣. 含硅改性磷氮阻燃Lyocell纤维的制备及其性能[J]. 纺织学报, 2025, 46(10): 19-29.
[2] 侯颖慧, 刘肖燕, 柳东辰, 郝矿荣, 邹婷. 基于体外降解的输尿管支架管的多目标优化[J]. 纺织学报, 2025, 46(09): 154-162.
[3] 高闻语, 陈诚, 奚晓玮, 邓林红, 刘杨. 改性丝素蛋白纤维增强胶原基角膜修复材料的制备及其性能[J]. 纺织学报, 2025, 46(08): 1-9.
[4] 梁锋, 方沿, 张伟华, 唐余玲, 李双洋, 周建飞, 石碧. 基于金属-多酚网络的胶原蛋白基纤维制备及其力学性能[J]. 纺织学报, 2025, 46(08): 10-17.
[5] 陈晴宇, 陆春红, 张斌, 晋义凯, 黄琪帏, 王超, 丁彬, 俞建勇, 王先锋. 碳纤维增强水泥基灌浆料的制备及其性能[J]. 纺织学报, 2025, 46(08): 120-126.
[6] 岳航, 鹿超, 王春红, 李瀚宇. 基于主要化学成分的红麻与大麻拉伸强度预测[J]. 纺织学报, 2025, 46(08): 62-70.
[7] 朱雷, 李晓俊, 程春祖, 徐纪刚, 杜心宇. 四硼酸钠/单宁酸交联对海藻酸钙纤维结构与性能的影响[J]. 纺织学报, 2025, 46(07): 28-36.
[8] 刘宇祥, 乌婧, 徐锦龙, 谢锐敏, 王华平. 阳离子可染聚对苯二甲酸丙二醇酯预取向丝的制备及其性能[J]. 纺织学报, 2025, 46(07): 46-52.
[9] 李金键, 薛元, 陈宥融. 时序分布的段彩竹节纱及三通道转杯成纱工艺设计[J]. 纺织学报, 2025, 46(03): 72-81.
[10] 宋婉萌, 王宝弘, 孙宇, 杨家祥, 刘云, 王玉忠. 兼具力学性能与高效阻燃性能粘胶织物的制备及其性能[J]. 纺织学报, 2025, 46(02): 188-196.
[11] 郭艳文, 黄晓梅, 曹海建. 增强体结构对三维角联锁复合材料抗冲击性能的影响[J]. 纺织学报, 2025, 46(01): 80-86.
[12] 卢海龙, 于影, 左雨欣, 王浩然, 陈洪立, 汝欣. 取向增强抗CO2腐蚀纤维薄膜的制备及其性能[J]. 纺织学报, 2024, 45(12): 33-40.
[13] 杨鑫, 张昕, 潘志娟. 丝素纳米原纤增强再生丝素蛋白/聚乙烯醇纤维的结构与性能[J]. 纺织学报, 2024, 45(11): 1-9.
[14] 缪璐璐, 孟小奕, 董正梅, 彭倩, 何林伟, 邹专勇. 热处理工艺对喷气涡流纺低熔点涤纶长丝包芯纱力学性能的影响[J]. 纺织学报, 2024, 45(11): 73-79.
[15] 王宇航, 谭晶, 李好义, 徐锦龙, 杨卫民. 纳米纤维纱线静电纺制备技术研究进展[J]. 纺织学报, 2024, 45(11): 235-243.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!