纺织学报 ›› 2025, Vol. 46 ›› Issue (10): 19-29.doi: 10.13475/j.fzxb.20250201001

• 纤维材料 • 上一篇    下一篇

含硅改性磷氮阻燃Lyocell纤维的制备及其性能

高敏1, 程春祖1,2(), 徐中凯1, 赵庆波1, 张东1, 代欣欣1   

  1. 1.中国纺织科学研究院有限公司 生物基纤维材料全国重点实验室, 北京 100025
    2.天津科技大学 天津市制浆造纸重点实验室, 天津 300457
  • 收稿日期:2025-02-06 修回日期:2025-06-04 出版日期:2025-10-15 发布日期:2025-10-15
  • 通讯作者: 程春祖(1984—),男,高级工程师,硕士。主要研究方向为生物质纤维材料。E-mail:chengchunzu@cta.gt.cn
  • 作者简介:高敏(1987—),女,工程师,硕士。主要研究方向为再生纤维素纤维制备技术。

Preparation and properties of Lyocell fiber with silicon-containing modified phosphorus-nitrogen flame retardant

GAO Min1, CHENG Chunzu1,2(), XU Zhongkai1, ZHAO Qingbo1, ZHANG Dong1, DAI Xinxin1   

  1. 1. State Key Laboratory of Bio-Based Fiber Materials, China Textile Academy, Beijing 100025, China
    2. Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science & Technology, Tianjin 300457, China
  • Received:2025-02-06 Revised:2025-06-04 Published:2025-10-15 Online:2025-10-15

摘要: 为提高Lyocell纤维的阻燃性能,采用正硅酸乙酯对1,2-二(2-氧-5,5-二甲基-1,3,2-二氧磷环己基-2-亚氨基)乙烷(DDPON)进行改性,制备了含硅改性磷氮阻燃剂(Si-DDPON),通过原液共混工艺将其应用于Lyocell纤维中,制备了含硅改性磷氮阻燃Lyocell纤维。借助红外光谱仪、扫描电镜、热重分析仪、氧指数测试仪及纤维强伸度仪研究了Si-DDPON对Lyocell纤维的微观形貌、热稳定性、阻燃性能及力学性能的影响,并利用热重-红外光谱联用仪及拉曼光谱仪分析了阻燃Lyocell纤维热解气体和残炭形貌,提出了Si-DDPON对Lyocell纤维的阻燃机制。结果表明:添加质量分数为35%的Si-DDPON,Lyocell纤维的最大热降解温度从357.4 ℃降低到316.0 ℃,在800 ℃时残炭量提升2.2倍,LOI值由18.0%提高到28.5%,阻燃效果显著改善;在燃烧过程中Si-DDPON通过降低Lyocell纤维燃烧时可燃气体的释放量,以及释放不可燃气体起到气相阻燃作用,同时通过提高炭渣的石墨化程度和致密度,促进形成致密连续的含硅膨胀炭层起到凝聚相阻燃作用,二者共同作用提升了Lyocell纤维的阻燃性能。

关键词: Lyocell纤维, 磷氮阻燃剂, 阻燃性能, 力学性能, 阻燃机制

Abstract:

Objective Lyocell fiber is a green and environmentally regenerable cellulose fiber, but has high flammability and high flame propagation. With wide application of Lyocell fibers in the fields of textile materials, nonwoven materials and high-performance filler materials, the potential danger of fire is increasing, which is a serious threat to the safety of people's lives and properties. Therefore, it is necessary to prepare flame retardant Lyocell fibers to slow down their thermal decomposition process and reduce their flammability.

Method Silicon-containing modified phosphorus-nitrogen flame retardant Si-DDPON was prepared by modifying 1,2-bis(2-oxo-5,5-dimethyl-1,3,2-dioxyphosphacyclohexy-2-imino)ethane(DDPON)with tetraethylorthosilicate (TEOS), and then Si-DDPON was used to prepare flame retardant Lyocell fibers by physical blending process. The effects of Si-DDPON on the micro morphology, thermal properties, flame retardant properties and mechanical properties of Lyocell fibers were characterized and analyzed by using scanning electron microscope, thermogravimetric analyzer, limiting oxygen index and mechanical properties tests. The pyrolysis gas and the char morphology of the Lyocell fibers were analyzed by the thermogravimetric-infrared spectroscopy and Raman spectroscopy, and the retardant mechanism was explored.

Results After modified by TEOS, the water contact angle of DDPON was increased from (44.5°±0.9°) to (128°±2.7°), and the water solubility was reduced from 0.86 g/(100 gH2O) to 0.001 9 g/(100 gH2O) at 98 ℃, showing excellent hydrophobicity and water resistance. Scanning electron microscopy and X-ray photoelectron spectroscopy results showed that a small amount of flame retardant particles were attached to the surface of Lyocell fibers after the addition of Si-DDPON. Scanning electron microscopy and energy dispersive spectrometer results showed that the fiber cross-section was uniformly distributed by Si-DDPON. Thermogravimetric experiments demonstrated that the maximum thermal degradation temperature of Lyocell fiber was reduced from 357.4 ℃ to 316.0 ℃, and the amount of residual carbon was increased from 6.1% to 19.6% at 800 ℃ when Si-DDPON with a mass fraction of 35% was added, indicating that the thermal stability of the Lyocell fibers had been greatly improved. Limiting oxygen index(LOI) results indicated that the LOI value of Lyocell fibers increased from 18.0% to 28.5% when the mass fraction of Si-DDPON was 35%, and the LOI value of the fibers remained at 28% after 20 washing cycles, which showed a good performance of water washing resistance. The results of mechanical property tests showed that the mechanical properties of Lyocell fibers were reduced by the addition of Si-DDPON. However, the dry breaking strengths and wet breaking strengths of 35%Si-DDPON-Lyocell fibers were 2.87 cN/dtex and 2.46 cN/dtex, respectively, which retained 75.5% and 75.7% of the pure Lyocell fibers. The analysis of flame retardant mechanism demonstrated that Si-DDPON can improve the flame retardancy of Lyocell fibers by acting on both gas phase and condensed phase. In the gas phase, Si-DDPON inhibited the generation of flammable gas products and promoted the release of non-flammable gas during the combustion process of Lyocell fibers, whereas in the condensed phase, Si-DDPON promoted the formation of a stable expanded char layer and increased the degree of graphitization of the carbon layer, which improved the flame retardant performance of Lyocell fibers.

Conclusion Compared with pure Lyocell fibers, the thermal stability and flame retardant effects of Si-DDPON-Lyocell fibers were significantly improved. When the total amount of Si-DDPON was 35%, the maximum thermal degradation temperature of Lyocell fibers decreased from 357.4 ℃ to 316.0 ℃, the char residue increased by 2.2 times at 800 ℃, and the LOI value of Lyocell fibers rose from 18.0% to 28.5%. Moreover, the LOI value of Si-DDPON-Lyocell fibers remaind at 28.0% after 20 washing cycles, demonstrating excellent wash durability. During the combustion process of Si-DDPON-Lyocell fibers, Si-DDPON acts as a gas-phase flame retardant by reducing the amount of combustible gases and releasing non-combustible gases. Meanwhile, Si-DDPON promots the formation of dense, continuous silicon-containing expanded carbon layer in the condensed phase, both of which work together to enhance the flame retardancy of Lyocell fibers.

Key words: Lyocell fiber, phosphorus nitrogen flame retardant, flame retardant property, mechanical property, flame retardant mechanism

中图分类号: 

  • TS102.5

图1

溶胶-凝胶法的水解与缩合反应机制"

图2

阻燃剂的红外光谱"

图3

阻燃剂的SEM照片(×5 000)"

图4

阻燃剂的水溶解度"

图5

阻燃剂在氮气中的TG及DTG曲线"

图6

纯Lyocell纤维及Si-DDPON-Lyocell纤维的红外光谱图"

图7

纤维的SEM照片(×3 000)"

图8

纤维的XPS总扫描谱图"

图9

Si-DDPON-Lyocell纤维截面的EDS图像"

图10

不同质量分数Si-DDPON-Lyocell纤维在氮气中的TG及DTG曲线"

表1

不同质量分数Si-DDPON-Lyocell纤维在氮气中的热重分析数据"

样品名称 T5%/
Tmax/
800 ℃时的
残炭量/%
纯Lyocell纤维 289.5 357.4 6.1
25%Si-DDPPON-Lyocell纤维 288.6 341.3 11.4
35%Si-DDPPON-Lyocell纤维 286.2 316.0 19.6
45%Si-DDPPON-Lyocell纤维 284.4 304.2 27.3

表2

不同质量分数Si-DDPON-Lyocell纤维的LOI值及耐水洗测试数据"

样品名称 不同水洗次数下纤维的LOI值/%
0次 5次 12次 20次
纯Lyocell纤维 18.0 - - -
25%Si-DDPPON-Lyocell纤维 26.6 26.3 26.0 25.7
35%Si-DDPPON-Lyocell纤维 28.5 28.2 28.2 28.0
45%Si-DDPPON-Lyocell纤维 28.9 28.5 28.5 28.2

图11

纯Lyocell非织造布及Si-DDPON-Lyocell非织造布的锥形量热测试结果"

表3

纯Lyocell非织造布及Si-DDPON-Lyocell非织造布的锥形量热数据"

样品名称 PHRR值/
(kW·m-2)
THR值/
(MJ·m-2)
TPHRR/
s
残炭量/
%
纯Lyocell非织造布 166.7±0.3 1.98±0.01 18±1 0.6±0.1
Si-DDPON-Lyocell非织造布 117.5±0.5 1.51±0.01 20±1 4.8±0.1

表4

不同质量分数Si-DDPON-Lyocell纤维的力学性能及吸湿性能测试结果"

样品名称 断裂强度/(cN·dtex-1) 回潮
率/%
干态 湿态
纯Lyocell纤维 3.80±0.12 3.25±0.15 10.80
25%Si-DDPPON-Lyocell纤维 3.24±0.15 2.71±0.17 7.30
35%Si-DDPPON-Lyocell纤维 2.87±0.18 2.46±0.21 7.30
45%Si-DDPPON-Lyocell纤维 2.42±0.23 2.15±0.28 7.08

图12

纤维在不同温度下热分解产物的红外光谱图"

图13

纤维燃烧残炭的拉曼光谱图"

图14

纤维残炭的SEM照片"

[1] ZHAO J Y, JIANG L, ZUO C L, et al. Eco-friendly, efficient and durable flame retardant lyocell fabrics prepared via a feasible grafting of taurine[J]. Industrial Crops and Products, 2024, 218: 118925-118933.
doi: 10.1016/j.indcrop.2024.118925
[2] BAI B C, KIM E A, JEON Y P, et al. Improved flame-retardant properties of lyocell fiber achieved by phosphorus compound[J]. Materials Letters, 2014, 135: 226-228.
doi: 10.1016/j.matlet.2014.07.131
[3] ZHANG Q Y, LIU X H, REN Y L, et al. Phosphorated cellulose as a cellulose-based filler for developing continuous fire resistant lyocell fibers[J]. Journal of Cleaner Production, 2022, 368: 133242-133251.
doi: 10.1016/j.jclepro.2022.133242
[4] XU Z K, GAO M, ZHAO Q B, et al. A new method for preparing permanent flame-retardant Lyocell fibre: preparation of flame-retardant fibres by phosphorylated MTT/Lyocell blended fibres[J]. Cellulose, 2024, 31(7): 4565-4580.
doi: 10.1007/s10570-024-05882-0
[5] QI C M, WANG L S, DU J C, et al. Determination and correlation of solubilities of 1, 2-bis (2-oxo-5, 5-dimethyl-1, 3, 2-dioxyphosphacyclohexyl-2-imino) ethane in selected solvents[J]. Fluid Phase Equilibria, 2013, 360: 343-350.
doi: 10.1016/j.fluid.2013.09.058
[6] HAN F, PEI L J, XUE F F, et al. (Solid + Liquid) Phase equilibria of 1, 2-bis (2-oxo-5, 5-dimethyl-1, 3, 2-dioxyphosphacyclohexyl-2-imino) ethane in nine pure solvents[J]. Journal of Solution Chemistry, 2016, 45: 1146-1157.
doi: 10.1007/s10953-016-0491-9
[7] BOKOV D, JALI A T, Chupradit S, et al. Nanomaterial by sol-gel method: synthesis and application[J]. Advance in Materials Science and Engineering, 2021, 1: 5102014-5102034.
[8] MA Y M, WANG Y D, MA L, et al. Fabrication of hydrophobic and flame-retardant cotton fabric via sol-gel method[J]. Cellulose, 2023, 30(18): 11829-11843.
doi: 10.1007/s10570-023-05586-x
[9] CHOWDHURY M, AIQBAL M Z, RANA M M, et al. Green synthesis of novel green ceramic-based nanoparticles prepared by sol-gel technique for diverse industrial application[J]. Results in Surfaces and Interfaces, 2024, 14: 100178-100190.
doi: 10.1016/j.rsurfi.2023.100178
[10] NACHIT W, AHSAINE H A, RAMZI Z, et al. Photocatalytic activity of anatase-brookite TiO2 nanoparticles synthesized by sol-gel method at low temperature[J]. Optical Materials, 2022, 129: 112256-112260.
doi: 10.1016/j.optmat.2022.112256
[11] REHMAN Z U, KHAN L, HWAIN L, et al. Si-N matrix as an effective fire retardant source for cotton fabric, prepared through sol-gel process[J]. Fire, 2024, 7(3): 69-80.
doi: 10.3390/fire7030069
[12] 马君志, 葛红, 王冬, 等. 溶胶-凝胶法改性阻燃粘胶纤维的制备及其性能[J]. 纺织学报, 2021, 42(1): 10-15.
MA Junzhi, GE Hong, WANG Dong, et al. Preparation and properties of sol-gel modified flame retardant viscose fiber[J]. Journal of Textile Research, 2021, 42(1): 10-15.
doi: 10.1177/004051757204200103
[13] LIU Y, PAN Y T, WANG X, et al. Effect of phosphorus-containing inorganic-organic hybrid coating on the flammability of cotton fabrics: synthesis, characterization and flammability[J]. Chemical Engineering Journal, 2016, 294: 167-175.
doi: 10.1016/j.cej.2016.02.080
[14] 高敏, 赵庆波, 王书丽, 等. 一种复配磷氮系阻燃剂、阻燃再生纤维素纤维及制备方法: 中国, 118223143A[P]. 2024-06-21.
GAO Min, ZHAO Qingbo, WANG Shuli, et al. A compound phosphorus nitrogen flame retardant, flame retardant regenerated cellulose fiber, and its preparation method: CN 118223143A[P]. 2024-06-21.
[15] 刘晓威, 武伟红, 武翠翠, 等. 乙烯基聚硅氧烷包覆改性聚磷酸铵及其在环氧树脂中的阻燃应用[J]. 中国塑料, 2014, 28(3): 59-64.
LIU Xiaowei, WU Weihong, WU Cuicui, et al. Vinyl polysiloxane surface-modified ammonium polyphosphate and its application in epoxy resin as flame retar-dants[J]. China Plastics, 2014, 28(3): 59-64.
[16] ZHU B F, WANG M H, JIANG J J, et al. Spectroscopic identification and photochemistry of astrochemically relevant phosphorus-bearing mole-cules [O, C, N, P] and [2O, C, N, P][J]. The Astrophysical Journal, 2024, 964: 182-196.
doi: 10.3847/1538-4357/ad2846
[17] GUO Y B, XIAO M Y, REN Y L, et al. Synthesis of an effective halogen-free flame retardant rich in phosphorus and nitrogen for lyocell fabric[J]. Cellulose, 2021, 28(11): 7355-7372.
doi: 10.1007/s10570-021-03975-8
[18] MAKAROV I S, GOLOVA L K, KUZNETSOVA L K, et al. Composite fibers based on cellulose and tetraetoxysilane: preparation, structure and proper-ties[J]. Fibre Chemistry, 2017, 49: 101-107.
doi: 10.1007/s10692-017-9851-5
[19] YU Z R, LI S N, ZANG J, et al. Enhanced mechanical property and flame resistance of graphene oxide nanocomposite paper modified with functionalized silica nanoparticles[J]. Composites Part B: Engineering, 2019, 177: 107347-107357.
doi: 10.1016/j.compositesb.2019.107347
[20] 马君志. 二硫代焦磷酸酯基阻燃粘胶纤维的协同改性、机理及其产业化研究[D]. 无锡: 江南大学, 2022: 32-33.
MA Junzhi. Study on synergistic modification mechanism and industrialization of dithiopyrophosphate-based flame retardant viscose fiber[D]. Wuxi: Jiangnan University, 2022: 32-33.
[21] 许文迪, 陆嘉怡, 蔡博禹, 等. 含DOPO/吲哚的磺胺类化合物的合成及其阻燃环氧树脂[J]. 高分子材料科学与工程, 2024, 40(3): 56-65.
XU Wendi, LU Jiayi, CAI Boyu, et al. Synthesis of DOPO/indole-containing sulfonamide compounds and their flame retardant epoxy resins[J]. Polymer Materials Science & Engineering, 2024, 40(3): 56-65.
[22] 李娜, 王晓, 李振宝, 等. 基于腺嘌呤核苷酸单体的光接枝生态阻燃棉织物制备及其性能[J]. 纺织学报, 2022, 43(7): 97-103.
LI Na, WANG Xiao, LI Zhenbao, et al. Preparation and proterties of photografted flame-retardant cotton fabrics with modified adenine nucleotide[J]. Journal of Textile Research, 2022, 43(7): 97-103.
[1] 顾戚惠, 阳知乾, 王海楼, 魏发云, 张伟. 机织间隔织物增强水泥基复合材料的制备及其力学性能[J]. 纺织学报, 2025, 46(10): 120-128.
[2] 侯颖慧, 刘肖燕, 柳东辰, 郝矿荣, 邹婷. 基于体外降解的输尿管支架管的多目标优化[J]. 纺织学报, 2025, 46(09): 154-162.
[3] 高闻语, 陈诚, 奚晓玮, 邓林红, 刘杨. 改性丝素蛋白纤维增强胶原基角膜修复材料的制备及其性能[J]. 纺织学报, 2025, 46(08): 1-9.
[4] 梁锋, 方沿, 张伟华, 唐余玲, 李双洋, 周建飞, 石碧. 基于金属-多酚网络的胶原蛋白基纤维制备及其力学性能[J]. 纺织学报, 2025, 46(08): 10-17.
[5] 陈晴宇, 陆春红, 张斌, 晋义凯, 黄琪帏, 王超, 丁彬, 俞建勇, 王先锋. 碳纤维增强水泥基灌浆料的制备及其性能[J]. 纺织学报, 2025, 46(08): 120-126.
[6] 许云凯, 宋婉萌, 张旭, 刘云. 单宁酸基高效阻燃Lyocell织物的制备及其性能[J]. 纺织学报, 2025, 46(08): 145-153.
[7] 陈展毓, 俞森龙, 周家良, 朱丽萍, 周哲, 相恒学, 朱美芳. 有机膦酸改性聚乳酸织物的制备及其性能[J]. 纺织学报, 2025, 46(08): 154-163.
[8] 岳航, 鹿超, 王春红, 李瀚宇. 基于主要化学成分的红麻与大麻拉伸强度预测[J]. 纺织学报, 2025, 46(08): 62-70.
[9] 朱雷, 李晓俊, 程春祖, 徐纪刚, 杜心宇. 四硼酸钠/单宁酸交联对海藻酸钙纤维结构与性能的影响[J]. 纺织学报, 2025, 46(07): 28-36.
[10] 刘宇祥, 乌婧, 徐锦龙, 谢锐敏, 王华平. 阳离子可染聚对苯二甲酸丙二醇酯预取向丝的制备及其性能[J]. 纺织学报, 2025, 46(07): 46-52.
[11] 廖喜林, 曾媛, 刘淑萍, 李亮, 李淑静, 刘让同. 磷/氮/硅复配协效阻燃棉织物制备及其性能[J]. 纺织学报, 2025, 46(03): 151-157.
[12] 张帆, 程春祖, 郭翠彬, 张东, 程敏, 李婷, 徐纪刚. Lyocell纤维直接成网工艺优化与性能分析[J]. 纺织学报, 2025, 46(03): 34-40.
[13] 李金键, 薛元, 陈宥融. 时序分布的段彩竹节纱及三通道转杯成纱工艺设计[J]. 纺织学报, 2025, 46(03): 72-81.
[14] 张洁, 郭鑫源, 关晋平, 程献伟, 陈国强. 磷/氮阻燃剂原位沉积对棉织物的耐久阻燃改性[J]. 纺织学报, 2025, 46(02): 180-187.
[15] 宋婉萌, 王宝弘, 孙宇, 杨家祥, 刘云, 王玉忠. 兼具力学性能与高效阻燃性能粘胶织物的制备及其性能[J]. 纺织学报, 2025, 46(02): 188-196.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!