纺织学报 ›› 2025, Vol. 46 ›› Issue (07): 111-118.doi: 10.13475/j.fzxb.20240900201

• 纺织工程 • 上一篇    下一篇

蚕丝/氨纶医用压力臂套服用性能评价

张逸飞, 万玥, 暨若云, 付少举, 王璐, 关国平()   

  1. 东华大学 上海市现代纺织前沿科学研究基地, 上海 201600
  • 收稿日期:2024-09-02 修回日期:2025-03-21 出版日期:2025-07-15 发布日期:2025-08-14
  • 通讯作者: 关国平(1980—),男,教授,博士。主要研究方向为生物医用材料。E-mail:ggp@dhu.edu.cn
  • 作者简介:张逸飞(2000—),女,硕士生。主要研究方向为生物医用纺织材料。
  • 基金资助:
    高等学校学科创新引智计划项目(BP0719035)

Evaluation of wear performance of natural silk/spandex medical compression sleeves

ZHANG Yifei, WAN Yue, JI Ruoyun, FU Shaoju, WANG Lu, GUAN Guoping()   

  1. Shanghai Frontier Science Research Center for Advanced Textiles, Donghua University, Shanghai 201600, China
  • Received:2024-09-02 Revised:2025-03-21 Published:2025-07-15 Online:2025-08-14

摘要:

为解决医用压力服装的舒适性问题,以天然蚕丝/氨纶包覆纱为原料,采用平针衬垫(衬垫比为1∶3)结构,通过调整不同衬垫纱初始模量(0.4~0.6 cN/tex)、地纱芯纱线密度(4.44、6.11、7.78 tex)和喂纱张力分级(2~4级)等针织参数,制备无缝医用压力臂套。通过分析压力臂套的力学性能,对比筛选最优的制样参数,并与商用产品进行对比,探讨各制样参数对压力臂套舒适性和服装压的影响。结果表明:在力学性能方面,所制样品的弹性回复率最高可达87%,应力松弛率可低于8%,且在模拟23 h/d穿戴条件的循环载荷测试中,力学强度衰减较商用产品降低51%;在舒适性方面,样品17的透气率达到(371.892±18.80) L/(m2·s),样品6的综合导湿性能评分达到4分。此外,压力臂套样品17的抗静电性能评级达到较优秀以上。在服装压测试中,所制样品满足医用压力服装不同等级的压缩需求。

关键词: 压力臂套, 蚕丝, 包覆纱, 服装压, 舒适性, 医用压力服装

Abstract:

Objective Medical compression garments have been widely used in adjunctive treatment of post-burn scars, lymphedema, and lipedema. With advancements in treatment methods and technology, the research focus has shifted toward improving comfort of the garments while ensuring necessary therapeutic pressure. Enhancing comfort is crucial for increasing patient compliance with medical compression garments, thereby improving treatment outcomes. This study aims to develop a seamless medical compression sleeve using natural silk/spandex covered yarns and to optimize the knitting parameters for improved mechanical properties and comfort level.

Method The seamless medical compression sleeves were fabricated using natural silk/spandex covered yarns, utilizing a plain stitch pad structure (pad ratio of 1∶3). Key knitting parameters, including the initial modulus of the pad yarn, the fineness of the ground yarn core yarn, and the yarn feeding tension, were adjusted to produce the sleeves. The mechanical properties of the compression sleeves were tested, and the optimal manufacturing parameters were selected. A comparative analysis was conducted with commercial products to assess the influence of these parameters on the comfort and garment pressure of the compression sleeves.

Results The results revealed that the fabricated samples exhibited a high elastic recovery rate 87%, a low stress relaxation rate 8%, and excellent fatigue resistance, indicating superior mechanical properties. In terms of comfort, sample 17 demonstrated remarkable permeability, with a value of (371.89±18.80) L/(m2·s), significantly higher than the standard value. Sample 6 showed a comprehensive moisture management performance score of 4 points, categorizing it as very good. Furthermore, the anti-static performance of the samples was rated as good to excellent, ensuring that the sleeves do not accumulate static charge during wear, which enhances user comfort and safety. For garment pressure tests, the fabricated samples successfully met the varying compression requirements of medical compression garments, indicating their suitability for therapeutic use. These findings demonstrate that the optimized knitting parameters not only improve the mechanical performance of the compression sleeves but also significantly enhance their comfort. These findings demonstrate that while different samples excelled in specific aspects such as breathability and moisture man-agement by combining the optimal parameters from each, it is feasible to create a single compression sleeve that integrates these superior properties.

Conclusion This study highlights the importance of optimizing knitting parameters to develop medical compression garments that combine therapeutic efficacy with superior comfort. The natural silk/spandex covered yarns are employed to produce compression sleeves that meet the necessary mechanical requirements while offering enhanced permeability, moisture management, and anti-static performance. These properties are critical for improving patient compliance, as comfortable compression garments are more likely to be worn consistently, thereby enhancing the overall effectiveness of the treatment. The successful comparison with commercial products suggests that the developed sleeves could be a promising alternative to available medical compression garments, with wide potential applications in the treatment of various conditions requiring compression therapy. Further research could explore the long-term durability and patient feedback to refine the design and ensure its practical utility in clinical settings.

Key words: compression sleeve, silk, covered yarn, garment pressure, comfort, medical pressure garment

中图分类号: 

  • TS146

图1

平针1∶3衬垫组织结构示意图"

表1

面料设计参数"

样品
编号
衬垫纱初始
模量/(cN·tex-1)
地纱线
密度/tex
喂纱张力
分级/级
1 0.4 4.44 2
2 0.4 4.44 3
3 0.4 4.44 4
4 0.4 7.78 2
5 0.4 7.78 3
6 0.4 7.78 4
7 0.4 6.11 2
8 0.4 6.11 3
9 0.4 6.11 4
10 0.5 4.44 2
11 0.5 4.44 3
12 0.5 4.44 4
13 0.5 7.78 2
14 0.5 7.78 3
15 0.5 7.78 4
16 0.5 6.11 2
17 0.5 6.11 3
18 0.5 6.11 4
19 0.6 4.44 2
20 0.6 4.44 3
21 0.6 4.44 4
22 0.6 7.78 2
23 0.6 7.78 3
24 0.6 7.78 4
25 0.6 6.11 2
26 0.6 6.11 3
27 0.6 6.11 4

图2

服装压测定装置"

表2

样品弹性回复率及应力松弛率"

样品
编号
弹性回
复率/%
应力松
弛率/%
样品
编号
弹性回
复率/%
应力松
弛率/%
1 74 9 15 63 10
2 65 13 16 68 11
3 63 13 17 84 8
4 75 13 18 72 11
5 75 9 19 73 10
6 84 9 20 70 12
7 82 10 21 73 9
8 69 10 22 71 10
9 87 9 23 71 9
10 76 9 24 75 9
11 83 12 25 84 10
12 76 12 26 72 11
13 85 9 27 67 11
14 74 9

图3

样品力学性能综合评分结果"

图4

医用压力臂套耐疲劳性能测试图"

图5

不同样品织物水分含量变化曲线及水分含量饼图"

图6

样品反面透水情况"

表3

样品综合导湿能力评分表"

试样号 OMMC评分 评级结果
商用样品1 0
商用样品2 0.67 很好
商用样品3 0.15 一般
样品6 0.63 很好

图7

各样品回潮率对比"

图8

各试样服装压对比"

[1] MACRAE B A, COTTER J D, LAING R M. Compression garments and exercise: garment considerations, physiology and performance[J]. Sports Medicine, 2011, 41: 815-843.
doi: 10.2165/11591420-000000000-00000 pmid: 21923201
[2] 赵立环, 刘斯璐, 赵晓明, 等. 医用紧身服应用现状及发展趋势[J]. 针织工业, 2023(2): 54-59.
ZHAO Lihuan, LIU Silu, ZHAO Xiaoming, et al. Application status and development prospect of medical tight-fitting garments[J]. Knitting Industries, 2023(2): 54-59.
[3] WANG L, FELDER M, CAI J Y. Study of properties of medical compression garment fabrics[J]. Journal of Fiber Bioengineering and Informatics, 2011, 4(1): 15-22.
[4] POWELL H M, NEDELEC B. Mechanomodulation of burn scarring via pressure therapy[J]. Advances in Wound Care, 2022, 11(4): 179-191.
[5] ERDINÇ GÜNDÜZ N, SAHIN E, DILEK B, et al. Adherence to compression garment wear and associated factors among patients with breast cancer-related lymphedema: a pilot study from a Turkish tertiary center[J]. Lymphatic Research and Biology, 2022, 20(6): 665-670.
doi: 10.1089/lrb.2021.0091 pmid: 35245100
[6] AGARWAL S, JUNEJA S. The effectiveness of compression garment in relieving muscular pain: a review[J]. International Journal of Clothing Science and Technology, 2023, 35(4): 557-564.
[7] 周梦云, 阎玉秀, 金子敏, 等. 增生性瘢痕压力服研究与临床现状及展望[J]. 现代纺织技术, 2021, 29(5): 78-87.
ZHOU Mengyun, YAN Yuxiu, JIN Zimin, et al. Research, clinical status and prospect of hypertrophic scar pressure garments[J]. Modern Textile Technology, 2021, 29 (5): 78-87.
[8] ROSSER P. Adherence to pressure garment therapy of post traumatic burn injury: 87[J]. Journal of Burn Care & Research, 2000. DOI:10.1097/00004630-200001001-00087.
[9] MURUGESH BABU K, SAHANA N, ANITHA D, et al. Silk fibroin coated antimicrobial textile medical products[J]. The Journal of The Textile Institute, 2021, 112(8): 1199-1207.
[10] 李莹莹, 王昉, 刘其春, 等. 丝素蛋白及其复合材料的研究进展[J]. 材料工程, 2018, 46(8): 14-26.
doi: 10.11868/j.issn.1001-4381.2017.001242
LI Yingying, WANG Fang, LIU Qichun, et al. Research progress in silk fibroin and its composite materials[J]. Materials Engineering, 2018, 46 (8): 14-26.
[11] SAHOO J K, HASTURK O, FALCUCCI T, et al. Silk chemistry and biomedical material designs[J]. Nature Reviews Chemistry, 2023, 7(5): 302-318.
doi: 10.1038/s41570-023-00486-x pmid: 37165164
[12] TIAN L, SHI J, CHEN H, et al. Cut-resistant performance of Kevlar and UHMWPE covered yarn fabrics with different structures[J]. The Journal of The Textile Institute, 2022, 113(7): 1457-1463.
[13] 唐明迷, 龙海如, 徐红, 等. 驼绒/水溶性维纶包芯纱的包覆效果及性能[J]. 东华大学学报(自然科学版), 2014, 40(5): 549-554.
TANG Mingmi, LONG Hairu, XU Hong, et al. Covering effect and properties of camel hair/water-soluble PVA core-spun yarn[J]. Journal of Donghua University (Natural Science Edition), 2014, 40 (5): 549-554.
[14] 李世超. 江南丝绸文化高质量发展的苏州实践[J]. 江苏丝绸, 2021(6): 4-6.
LI Shichao. Suzhou's practice of high-quality development of Jiangnan silk culture[J]. Jiangsu Silk, 2021(6): 4-6.
[15] 何紫琴, 张倩, 牛文鑫, 等. 基于压力织物的地组织用包覆纱的成型[J]. 上海纺织科技, 2021, 49(12): 26-30.
HE Ziqin, ZHANG Qian, NIU Wenxin, et al. Forming of covered yarn for ground weave based on pressure fabric[J]. Shanghai Textile Technology, 2021, 49 (12): 26-30.
[16] 刘飞燕, 张建方. 多指标回归综合评分[J]. 数理统计与管理, 2014, 33(3): 408-415.
LIU Feiyan, ZHANG Jianfang. Multi-index comprehensive regression scoring[J]. Mathematical Statistics and Management, 2014, 33 (3): 408-415.
[17] MACINTYRE L, BAIRD M. Pressure garments for use in the treatment of hypertrophic scars: a review of the problems associated with their use[J]. Burns, 2006, 32(1): 10-15.
[18] 王俊珲. 体育科学视角下运动服装的压力与舒适性研究[J]. 染整技术, 2024, 46(4): 51-53.
WANG Junhui. Research on pressure and comfort of sportswear from the perspective of sports science[J]. Dyeing and Finishing Technology, 2024, 46 (4): 51-53.
[19] MACINTYRE L, DAHALE M, RAE M. Impact of moisture on the pressure delivering potential of pressure garments[J]. Journal of Burn Care & Research, 2016, 37(4): 365-373.
[20] 金贵玉, 程伟. 服装压力舒适性主要影响因素和压力测量方法[J]. 针织工业, 2022(5): 75-79.
JIN Guiyu, CHENG Wei. Main factors affecting clothing pressure comfort and measurement methods[J]. Knitting Industries, 2022, (5): 75-79.
[1] 刘颖慧, 张昭华, 杨艺文. 基于热电制冷技术的管道式通风服研发与测评[J]. 纺织学报, 2025, 46(07): 209-216.
[2] 罗玉玲, 杨喜竹, 王星岚, 郑晓慧, 赵胜男, 常素芹. 以相变包为冷源的冷却服研究进展[J]. 纺织学报, 2025, 46(07): 253-261.
[3] 腾燕飞, 万爱兰. 消臭运动袜的研发及其性能[J]. 纺织学报, 2025, 46(06): 120-126.
[4] 于晓坤, 易萍, 谢冠婧, 蔡凌霄. 基于人体动力学的服装衣袖运动舒适性探究[J]. 纺织学报, 2025, 46(06): 196-202.
[5] 徐桐, 徐瑞东, 王奕文, 田明伟. 纺织基触摸电子织物的制备及其触摸性能[J]. 纺织学报, 2025, 46(06): 31-37.
[6] 朱梦慧, 葛美彤, 董智佳, 丛洪莲, 马丕波. 纬编双面羊毛/涤纶交织物的结构与热湿性能评价[J]. 纺织学报, 2025, 46(05): 179-185.
[7] 杨琪, 周晓钰, 季静, 戴宏钦. 化学防护服内湿度调节装置的设计与性能评价[J]. 纺织学报, 2025, 46(05): 262-269.
[8] 沙莎, 戴佳丽, 褚国伟, 付康怡, 刘雅婷, 邓中民. 全成形康复训练裤的结构设计与实现[J]. 纺织学报, 2025, 46(04): 171-178.
[9] 张蕙, 杨海伟, 金鲜花, 杨超, 王宗乾. 氯化胆碱低共熔溶剂在蚕丝绵片脱胶和辅助漂白中的应用[J]. 纺织学报, 2025, 46(04): 103-108.
[10] 岳欣琰, 邵剑波, 王小虎, 韩潇, 赵晓曼, 洪剑寒. 基于镀银锦纶/锦纶/水性聚氨酯复合纱的一维结构柔性电容传感器[J]. 纺织学报, 2025, 46(03): 82-89.
[11] 王浙峰, 蔡王丹, 李诗雅, 徐青艺, 张红霞, 祝成炎, 金肖克. 抗菌除臭复合功能机织物的服用性能[J]. 纺织学报, 2025, 46(03): 90-99.
[12] 敖利民, 潘柳菲, 唐雯, 方瑞峰. 四轴系喂入包覆纱的复合结构与性能[J]. 纺织学报, 2025, 46(01): 52-61.
[13] 巫晓雯, 方蕾妹, 江昆, 丛洪莲. 基于热湿舒适性的横编全成形运动内衣的分区设计[J]. 纺织学报, 2024, 45(12): 172-179.
[14] 杨鑫, 张昕, 潘志娟. 丝素纳米原纤增强再生丝素蛋白/聚乙烯醇纤维的结构与性能[J]. 纺织学报, 2024, 45(11): 1-9.
[15] 王勃翔, 徐航丹, 李佳, 林杰, 程德红, 路艳华. 柞蚕丝素纳米纤维温敏复合膜制备及其生物相容性[J]. 纺织学报, 2024, 45(09): 18-25.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!