纺织学报 ›› 2025, Vol. 46 ›› Issue (08): 10-17.doi: 10.13475/j.fzxb.20241004301

• 纤维材料 • 上一篇    下一篇

基于金属-多酚网络的胶原蛋白基纤维制备及其力学性能

梁锋1, 方沿1, 张伟华1,2, 唐余玲1,2, 李双洋1,2(), 周建飞1,2, 石碧1,2,3   

  1. 1.四川大学 轻工科学与工程学院, 四川 成都 610065
    2.四川大学 皮革化学与工程教育部重点实验室,四川 成都 610065
    3.天府永兴实验室 生物质材料研究中心, 四川 成都 610213
  • 收稿日期:2024-10-21 修回日期:2025-03-18 出版日期:2025-08-15 发布日期:2025-08-15
  • 通讯作者: 李双洋(1991—),男,副研究员,博士。主要研究方向为制革固废高值化利用、生物质资源利用、高分子复合功能材料。E-mail:lishuangyang@scu.edu.cn
  • 作者简介:梁锋(1998—),男,硕士生。主要研究方向为生物质纤维材料。
  • 基金资助:
    国家自然科学基金青年科学基金项目(22308232);天府永兴实验室有组织科研项目(2024KJGG20)

Preparation and mechanical properties of collagen-based fibers employing metal-polyphenol networks

LIANG Feng1, FANG Yan1, ZHANG Weihua1,2, TANG Yuling1,2, LI Shuangyang1,2(), ZHOU Jianfei1,2, SHI Bi1,2,3   

  1. 1. College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China
    2. Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu, Sichuan 610065, China
    3. Research Center for Biomass Materials, Tianfu Yongxing Laboratory, Chengdu, Sichuan 610213, China
  • Received:2024-10-21 Revised:2025-03-18 Published:2025-08-15 Online:2025-08-15

摘要: 为解决再生胶原蛋白基纤维水化程度高、力学性能差、蛋白留存率低等问题,采用从制革废弃物中提取的胶原蛋白与可生物降解的聚乙烯醇(PVA)进行共混纺丝,并引入金属-多酚网络(MPN)进行交联,构建金属配位-氢键双交联网络,制备了具有高蛋白留存率和优异力学性能的复合纤维。借助粒径分析仪和Zeta电位仪探讨了单宁酸(TA)与Al3+的最佳量比及MPN用量对复合纤维性能的影响。结果表明:TA与Al3+的量比为3∶1时,MPN组装使Zeta电位由-2.83 mV降低至-38.58 mV,体系稳定性最佳;MPN的加入通过金属配位键与氢键的协同作用,使胶原蛋白与聚乙烯醇有效交联;MPN的引入提高了复合纤维的结晶度和取向度;当MPN添加量为6%时,复合纤维的断裂强度达到243 MPa,蛋白留存率提高了2倍。本研究为制革固体废弃物的高值化利用及纺织行业的可持续发展提供了新的技术路径。

关键词: 胶原蛋白, 金属-多酚网络, 湿法纺丝, 聚乙烯醇, 力学性能, 制革废弃物, 胶原基复合纤维

Abstract:

Objective The textile industry generates a large amount of textile waste every year, which seriously pollutes the environment, and its overreliance on petroleum-based fibers, which are difficult to biodegrade, limits the sustainable development of the textile industry. Therefore, the development of durable and high-performance fibers with a circular economy effect is of great significance for the sustainable development of the textile industry.

Method In this research, collagen-based composite fibers with excellent mechanical properties were successfully prepared by blending collagen with biodegradable poly(vinyl alcohol) (PVA) co-spinning, combined with the introduction of metal-polyphenol network (MPN) to construct a metal-ligand-hydrogen-bonded double crosslinked network.

Results The results showed that when the n(TA)∶n(Al3+) molar ratio was 3∶1, the MPN assembly reduced the zeta potential from -2.83 mV to -38.58 mV, and the system stability was optimal. Infrared spectroscopy analysis indicated that the incorporation of MPN effectively cross-linked collagen with poly(vinyl alcohol) through the synergistic effect of metal-ligand bonding and hydrogen bonding. X-ray diffraction and small angle X-ray scattering/wide-angle X-ray scattering analyses showed that the MPN introduction improved the crystallinity and orientation of the composite fibers. When the MPN addition was 6%, the tensile strength of the composite fibers reached 243 MPa, and the protein retention rate was doubled.

Conclusion Co-spinning of collagen with biodegradable PVA and the simultaneous introduction of metal-polyphenol network for the preparation of composite fibers can significantly improve the mechanical properties and protein retention rate of collagen-based composite fibers, which opens up a new way for the high-value utilisation of tannery waste and the sustainable development of the textile industry.

Key words: collagen, metal polyphenol network, wet spinning, polyvinyl alcohol, mechanical property, solid waste of leather manufacture, collage-based composite fiber

中图分类号: 

  • TQ342

图1

不同量比MPN溶液的粒径分布和多分散性指数"

表1

不同量比MPN溶液的Zeta电位"

n(TA)∶n(Al3+) Zeta电位/mV
6∶1 -32.3
3∶1 -38.5
1∶1 -34.2
1∶3 -30.3
1∶6 -25.1
1∶0 -2.8

图2

复合纤维的微观形貌和元素分布照片"

图3

纤维的红外光谱图"

图4

Col及纤维的XRD曲线"

图5

复合纤维的SAXS和WAXS分析"

表2

PVA、PVA/Col和PVA/Col-MPN纤维的蛋白留存率及回潮率"

试样名称 蛋白留存率/% 回潮率/%
PVA纤维 4.7
PVA/Col纤维 37.2 6.8
PVA/Col-MPN纤维 74.8 8.9

图6

不同MPN质量分数纤维的力学性能"

表3

不同MPN含量纤维的结晶度"

试样编号 1 2 3 4 5
MPN质量分数/% 2 4 6 8 10
结晶度/% 45 50 56 54 51
[1] 闵雯. 胶原蛋白复合纤维的制备[D]. 北京: 北京服装学院, 2012: 1-5.
MIN Wen. Preparation of collagen composite fiber[D]. Beijing: Beijing Institute of Fashion Technology, 2012: 1-5.
[2] SUN Xuantong, WANG Xi, SUN Fengqiang, et al. Textile waste fiber regeneration via a green chemistry approach: a molecular strategy for sustainable fashion[J]. Advanced Materials, 2021. DOI: 10.1002/adma.202105174.
[3] 郭晓晓, 张红霞, 祝成炎, 等. 桑蚕丝/胶原蛋白锦纶丝交织物的性能研究[J]. 丝绸, 2020, 57(7): 15-18.
GUO Xiaoxiao, ZHANG Hongxia, ZHU Chengyan, et al. Study on the properties of mulberry silk/collagen nylon silk interwoven fabrics[J]. Journal of Silk, 2020, 57(7): 15-18.
[4] 魏伟, 张耀鹏, 赵瀛梅, 等. 再生丝素蛋白水溶液的干法纺丝[J]. 功能高分子学报, 2009, 22(3): 229-236.
WEI Wei, ZHANG Yaopeng, ZHAO Yingmei, et al. Dry spinning of regenerated silk protein aqueous solution[J]. Journal of Functional Polymers, 2009, 22(3): 229-236.
[5] SIONKOESKA A, ADAMIAK K, MUSIAL K, et al. Collagen based materials in cosmetic applications: a review[J]. Materials, 2020. DOI: 10.3390/ma13194217.
[6] 林云周, 胶原蛋白/聚乙烯醇复合纤维的制备及其结构与性能研究[D]. 成都: 四川大学, 2006: 1-10.
LIN Yunzhou. Preparation of collagen/poly(vinyl alcohol) composite fibers and their structure and properties[D]. Chengdu: Sichuan University, 2006: 1-10.
[7] 岳程飞, 丁长坤, 李璐, 等. 碳化二亚胺/羟基丁二酰亚胺交联改性胶原蛋白纤维制备及其性能[J]. 纺织学报, 2020, 41 (3): 1-7.
YUE Chengfei, DING Changkun, LI Lu, et al. Preparation of carbodiimide/hydroxysuccinimide cross-linked modified collagen fibers and their properties[J]. Journal of Textile Research, 2020, 41 (3): 1-7.
[8] EJIMA Hirotaka, RICHARDSON Joseph J, LIANG Kang, et al. One-step assembly of coordination complexes for versatile film and particle engineering[J]. Science, 2013, 341(6142): 154-157.
doi: 10.1126/science.1237265 pmid: 23846899
[9] DAI Yunlu, CHENG Siyuan, WANG Zhongliang, et al. Hypochlorous acid promoted platinum drug chemotherapy by myeloperoxidase-encapsulated therapeutic metal phenolic nanoparticles[J]. ACS Nano, 2018, 12(1): 455-463.
doi: 10.1021/acsnano.7b06852 pmid: 29293312
[10] WANG Zhong, KANG Haijiao, ZHANG Wei, et al. Improvement of interfacial interactions using natural polyphenol-inspired tannic acid-coated nanoclay enhancement of soy protein isolate biofilms[J]. Applied Surface Science, 2017, 401: 271-282.
[11] 秦洋. 玉米淀粉基水凝胶网络的构建及性能研究[D]. 无锡: 江南大学, 2021: 72-80.
QIN Yang, Construction and performance study of corn starch-based hydrogel network[D]. Wuxi: Jiangnan University, 2021: 72-80.
[12] LAN Tian, SHI Jiajia, DONG Yabo, et al. Optimizing texture and mechanical properties: the impact of pH-modulated metal-phenolic networks on soy protein isolate gels[J]. Food Hydrocolloids, 2024. DOI: 10.1016/j.foodhyd.2024.110011.
[13] HE Yuan, YE Zhuyifan, LIU Xinyang, et al. Can machine learning predict drug nanocrystals[J]. Journal of Controlled Release, 2020, 322: 274-285.
doi: S0168-3659(20)30195-4 pmid: 32234511
[14] 庞宇轩, 铁基胶体结构的构建及其应用研究[D]. 广州: 华南理工大学, 2022: 23-40.
PANG Yuxuan, Construction of iron-based colloidal structures and their applications[D]. Guangzhou: South China University of Technology, 2022: 23-40.
[15] 王倩, 裴洪艳, 高至亮, 等. 刺激响应性金属-多酚胶囊的可控组装及其在药物递送中的应用[J]. 科学通报, 2021, 66 (14): 1783-1792.
WANG Qian, PEI Hongyan, GAO Zhiliang, et al. Controlled assembly of stimuli-responsive metal-polyphenol capsules and their application in drug delivery[J]. Science Bulletin, 2021, 66 (14): 1783-1792.
[16] LIU Zhigao, CHEN Tao, HU Chaohao, et al. Calculation and analysis of interaction between characteristic functional group of persimmon tannin and metal ions[J]. Acta Physica Sinica, 2021. DOI:10.7498/aps.70.20201947.
[17] WANG Yanli, HE Junwei, ZOU Liming, et al. High performance polyvinyl alcohol/lignin fibers with excellent mechanical and water resistance properties[J]. International Journal of Biological Macromolecules, 2024. DOI: 10.1016/j.ijbiomac.2024.131244.
[18] ZHANG Lei, WANG Kai, WENG Sen, et al. Super strong and tough anisotropic hydrogels through synergy of directional freeze-casting, metal complexation and salting out[J]. Chemical Engineering Journal, 2023. DOI: 10.1016/j.cej.2023.142414.
[19] MIAO Xiaonan, LI Zhangpeng, HOU Kaiming, et al. Bioinspired multi-crosslinking and solid-liquid composite lubricating MXene/PVA hydrogel based on salting out effect[J]. Chemical Engineering Journal, 2023. DOI: 10.1016/j.cej.2023.146848.
[20] CHENG Yu, LIN Jiaxian, ZHENG Yunayaun, et al. High-performance gel-spun poly(vinyl alcohol) fibers reinforced by organosolv lignin-graft-poly(acrylic acid)[J]. Industrial & Engineering Chemistry Research, 2022, 61(17): 6037-6051.
[21] WANG Sha, JIANG Feng, XU Xu, et al. Super-strong, super-stiff macrofibers with aligned, long bacterial cellulose nanofibers[J]. Advanced Materials, 2017. DOI: 10.1002/adma.201702498.
[22] LU Chuanwei, WANG Chunpeng, ZHANG Daihui, et al. Ultra-strong hydroxypropyl cellulose/polyvinyl alcohol composite hydrogel by combination of triple-network and mechanical training[J]. International Journal of Biological Macromolecules, 2021, 184: 200-208.
doi: 10.1016/j.ijbiomac.2021.06.054 pmid: 34126151
[23] XIAO Yao, YANG Ze, GUO Baoling, et al. Strong and tough biofibers designed by dual crosslinking for sutures[J]. Advanced Functional Materials, 2023. DOI: 10.1002/adfm.202313131.
[1] 高闻语, 陈诚, 奚晓玮, 邓林红, 刘杨. 改性丝素蛋白纤维增强胶原基角膜修复材料的制备及其性能[J]. 纺织学报, 2025, 46(08): 1-9.
[2] 陈晴宇, 陆春红, 张斌, 晋义凯, 黄琪帏, 王超, 丁彬, 俞建勇, 王先锋. 碳纤维增强水泥基灌浆料的制备及其性能[J]. 纺织学报, 2025, 46(08): 120-126.
[3] 沈忱思, 王欣悦, 李方. 退浆废水预氧化-絮凝一体化处理及资源化技术[J]. 纺织学报, 2025, 46(08): 173-182.
[4] 岳航, 鹿超, 王春红, 李瀚宇. 基于主要化学成分的红麻与大麻拉伸强度预测[J]. 纺织学报, 2025, 46(08): 62-70.
[5] 王清清, 廖师琴, 魏取福. 光电双响应纱线应变传感器的制备及其性能[J]. 纺织学报, 2025, 46(08): 71-79.
[6] 朱雷, 李晓俊, 程春祖, 徐纪刚, 杜心宇. 四硼酸钠/单宁酸交联对海藻酸钙纤维结构与性能的影响[J]. 纺织学报, 2025, 46(07): 28-36.
[7] 刘宇祥, 乌婧, 徐锦龙, 谢锐敏, 王华平. 阳离子可染聚对苯二甲酸丙二醇酯预取向丝的制备及其性能[J]. 纺织学报, 2025, 46(07): 46-52.
[8] 陈亚娟, 郭瀚宇, 张陈恬, 李欣欣, 张雪萍. 聚乙烯醇/海藻酸钠/锦纶66复合水凝胶包芯纱的制备及其吸湿性能[J]. 纺织学报, 2025, 46(06): 103-110.
[9] 谭文萍, 张硕, 张倩, 张寅, 刘润政, 黄晓卫, 明津法. 聚乳酸纤维气凝胶制备及其辐射制冷性能[J]. 纺织学报, 2025, 46(06): 63-72.
[10] 王春翔, 李姣, 解开放, 薛宏坤, 徐广标. 天麻多糖/聚乙烯醇静电纺抗菌保鲜膜的制备与性能[J]. 纺织学报, 2025, 46(06): 73-79.
[11] 时晓聪, 陈莉, 杜迅. 茜素-聚乳酸/胶原蛋白纳米纤维膜的制备及其氨气检测性能[J]. 纺织学报, 2025, 46(05): 143-150.
[12] 郭羽晴, 屈芸, 张利平, 孙洁. 芳纶纳米纤维制备及其可纺性[J]. 纺织学报, 2025, 46(04): 1-10.
[13] 刘锦锋, 杜康存, 肖畅, 付少海, 张丽平. 多孔MXene/热塑性聚氨酯纤维的制备及其应力应变传感性能[J]. 纺织学报, 2025, 46(03): 41-48.
[14] 李金键, 薛元, 陈宥融. 时序分布的段彩竹节纱及三通道转杯成纱工艺设计[J]. 纺织学报, 2025, 46(03): 72-81.
[15] 王小艳, 杨书康, 肖国威, 杜金梅, 许长海. 光响应螺噁嗪掺杂长余辉发光纤维的制备及其性能[J]. 纺织学报, 2025, 46(02): 1-9.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!