Journal of Textile Research ›› 2022, Vol. 43 ›› Issue (02): 125-131.doi: 10.13475/j.fzxb.20210902007

• Textile Engineering • Previous Articles     Next Articles

Fabrication of novel biodegradable braided nerve grafts for nerve regeneration

YAO Ruotong1,2, ZHAO Jingyuan1, YAN Yixin1, DUAN Lirong1,2, WANG Tian3, YAN Jia1,2, ZHANG Shujun1, LI Gang1,2()   

  1. 1. College of Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu 215123, China
    2. National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, Jiangsu 215123, China
    3. Wilson College of Textiles, North Carolina State University, Raleigh 27695, USA
  • Received:2021-09-07 Revised:2021-11-21 Online:2022-02-15 Published:2022-03-15
  • Contact: LI Gang E-mail:tcligang@suda.edu.cn

Abstract:

In order to develop artificial nerve guidance conduits (NGCs) with good mechanical properties and biocompatibility, this paper describes a three-layer composite artificial nerve graft made up with a chitosan coating layer, a braided layer and a fibrous sponge layer using traditional braiding, electrospinning and freeze-drying techniques. The morphology, mechanical properties, biocompatibility and sustained-release properties were investigated, studying the effects of axial yarn, the outer and inner layers and magnesium ion concentration on its performance. The results showed that the prepared NGCs with braided and axial yarns possess good mechanical properties. The radial compressive property of the NGC with 50% deformation is 1.3 N and the axial tensile stress to yarn fracture is 30 N. The sponge layer features an inter-connected porous structure with uniform pore size distribution (0.04-0.08 mm). The magnesium ion in the NGC can be sustainably released for 28 d. When the concentration of magnesium ion solution is 0.02 g/mL, the NGC has the greatest effect on promoting cell proliferation. This paper provides new ideas for selecting materials for NGCs and optimizing their structural properties.

Key words: artificial nerve graft, peripheral nerve repair, biodegradability, silk fibroin, magnesium ion

CLC Number: 

  • TS102.3

Tab.1

Preparation parameters of nerve guidance conduits"

编号 编织纱线密度/tex 轴纱线密度/tex 涂层 内层
1 9 5 壳聚糖 海绵层
2 9 壳聚糖 海绵层
3 9 5
4 9

Fig.1

Morphology and diameter distribution of electrospun nanofibers"

Tab.2

Element content of electrospun nanofiber membranes with different magnesium ion concentrations"

样品中M g 2 +质量
浓度/(g·mL-1)
元素 质量分数/% 均方差 原子含量/%
0 C 67.152 0.680 73.143
O 32.838 0.679 26.852
Mg 0.010 0.062 0.006
0.01 C 69.003 0.607 74.850
O 30.666 0.608 24.972
Mg 0.310 0.067 0.177
0.015 C 69.197 0.607 75.013
O 30.509 0.608 24.829
Mg 0.294 0.068 0.158
0.02 C 67.662 0.611 73.790
O 31.390 0.613 25.699
Mg 0.948 0.079 0.511

Tab.3

FT-IR characteristic peaks of silk fibroin"

结构名称 浓度/cm-1 结构名称 浓度/cm-1
酰胺 Ⅰ 1 650~1 660 酰胺 Ⅰ 1 625~1 640
Silk Ⅰ 酰胺 Ⅱ 1 535~1 545 Silk Ⅱ 酰胺 Ⅱ 1 515~1 525
酰胺 Ⅲ 1 253 酰胺 Ⅲ 1 235

Fig.2

FT-IR curves of electrospun nanofiber membranes"

Fig.3

SEM micrograghs for braided nerve guidance conduits. (a) Cross section of conduit without sponge core; (b) Cross section of conduit with sponge core; (c) Wall of conduit"

Fig.4

Pore size distribution of nanofiber spongy core in nerve guidance conduit"

Fig.5

Mechanical properties of nerve guidance conduits. (a) Radial compression property; (b) Axial tensile property"

Fig.6

Release curves of magnesium ion in nerve guidance conduits"

Fig.7

CCK-8 results of cells cultured in conduits"

[1] AHN H S, HWANG J Y, KIM M S, et al. Carbon-nanotube-interfaced glass fiber scaffold for regeneration of transected sciatic nerve[J]. Acta Biomaterialia, 2015(13): 324-334.
[2] WEI C, MUNISH B S, LEE P, et al. Tissue-engineered spiral nerve guidance conduit for peripheral nerve regeneration[J]. Acta Biomaterialia, 2018(73): 302-311.
[3] CHIONO V, TONDA-TURO C. Trends in the design of nerve guidance channels in peripheral nerve tissue engineering[J]. Progress in Neurobiology, 2015(131): 87-104.
[4] XUE C, ZHU H, TAN D, et al. Electrospun silk fibroin-based neural scaffold for bridging a long sciatic nerve gap in dogs[J]. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12(2): 1143-1153.
[5] FAROKHI M, MOTTAGHITALAB F, SHOKRGOZAR M A, et al. Prospects of peripheral nerve tissue engineering using nerve guide conduits based on silk fibroin protein and other biopolymers[J]. International Materials Reviews, 2017, 62(7): 367-391.
[6] SARKER M D, NAGHIEH S, MCINNES A D, et al. Regeneration of peripheral nerves by nerve guidance conduits: influence of design, biopolymers, cells, growth factors, and physical stimuli[J]. Progress in Neurobiology, 2018(171): 125-150.
[7] 严佳, 李刚. 医用纺织品的研究进展[J]. 纺织学报, 2020, 41(9): 191-200.
YAN Jia, LI Gang. Research progress on medical textiles[J]. Journal of Textile Research, 2020, 41(9): 191-200.
[8] 门永芝, 於子卫. 生物材料构建神经导管修复周围神经损伤的研究进展[J]. 听力学及言语疾病杂志, 2014, 22(6): 654-658.
MEN Yongzhi, YU Ziwei. Research progress of nerve conduit constructed by biomaterials in repairing peripheral nerve injury[J]. Journal of Audiology and Speech Pathology, 2014, 22(6): 654-658.
[9] GODAVITARNE C, ROBERTSON A, PETERS J, et al. Biodegradable materials[J]. Orthopaedics and Trauma, 2017, 31(5): 316-320.
doi: 10.1016/j.mporth.2017.07.011
[10] LI G, LIU J, ZHENG Z, et al. Structural mimetic silk fiber-reinforced composite scaffolds using multi-angle fibers[J]. Macromolecular Bioscience, 2015, 15(8): 1125-1133.
doi: 10.1002/mabi.201400502
[11] ZHANG Z, ZHAO Z, ZHENG Z, et al. Functionalization of polyethylene terephthalate fabrics using nitrogen plasma and silk fibroin/chitosan microspheres[J]. Applied Surface Science, 2019(495): 143481.
[12] TIAN Y, WU Q, LI F, et al. A flexible and biocompatible bombyx mori silk fibroin/wool keratin composite scaffold with interconnective porous struc-ture[J]. Colloids and Surfaces B: Biointerfaces, 2021(208): 112080.
[13] FAROKHI M, MOTTAGHITALAB F, SHOKRGOZAR M A, et al. Prospects of peripheral nerve tissue engineering using nerve guide conduits based on silk fibroin protein and other biopolymers[J]. International Materials Reviews, 2017, 62(7): 367-391.
doi: 10.1080/09506608.2016.1252551
[14] ANITHA A, SOWMYA S, KUMAR P, et al. Chitin and chitosan in selected biomedical applications[J]. Progress in Polymer Science, 2014, 39(9): 1644-1667.
doi: 10.1016/j.progpolymsci.2014.02.008
[15] VENNEMEYER J J, HOPKINS T, HERSHCOVITCH M, et al. Initial observations on using magnesium metal in peripheral nerve repair[J]. Journal of Biomaterials Applications, 2015, 29(8): 1145-1154.
doi: 10.1177/0885328214553135
[16] PARHAM S, KHARAZI A Z, BAKHSHESHI-RAD H R, et al. Electrospun nano-fibers for biomedical and tissue engineering applications: a comprehensive review[J]. Materials 2020, 13(9): 2153.
doi: 10.3390/ma13092153
[17] 徐云强, 刘迎节, 李瑞欣, 等. 胶原/丝素蛋白神经导管修复周围神经缺损的研究与应用进展[J]. 中国组织工程研究, 2016, 20(38): 5745-5751.
XU Yunqiang, LIU Yingjie, LI Ruixin, et al. Collagen/silk fibroin nerve conduits used for repairing peripheral nerve defect: application and development[J]. Chinese Journal of Tissue Engineering Research, 2016, 20(38): 5745-5751.
[18] ZHENG Z, GUO S, LIU Y, et al. Lithium-free processing of silk fibroin[J]. Journal of Biomaterials Applications, 2016, 31(3): 450-463.
doi: 10.1177/0885328216653259
[19] YANG Y, WANG H, YAN F, et al. Bioinspired porous octacalcium phosphate/silk fibroin composite coating materials prepared by electrochemical deposition[J]. ACS Applied Materials & Interfaces, 2015, 7(10): 5634-5642.
[20] ZHU M, WANG K, MEI J, et al. Fabrication of highly interconnected porous silk fibroin scaffolds for potential use as vascular grafts[J]. Acta Biomaterialia, 2014, 10(5): 2014-2023.
doi: 10.1016/j.actbio.2014.01.022
[21] XIE X, YU J, ZHAO Z, et al. Fabrication and drug release properties of curcumin-loaded silk fibroin nanofibrous membranes[J]. Adsorption Science & Technology, 2019, 37(5-6): 412-424.
[22] HSUEH Y, CHANG Y, HUANG T, et al. Functional recoveries of sciatic nerve regeneration by combining chitosan-coated conduit and neurosphere cells induced from adipose-derived stem cells[J]. Biomaterials, 2014, 35(7): 2234-2244.
doi: 10.1016/j.biomaterials.2013.11.081
[23] 黄笛, 李芳, 李刚. 涤纶/蚕丝机织心脏瓣膜的制备及其性能[J]. 纺织学报, 2021, 42(2): 74-79.
HUANG Di, LI Fang, LI Gang. Preparation and performance of polyester/silk woven heart valve[J]. Journal of Textile Research, 2021, 42(2): 74-79.
[24] ZHANG S, WANG J, ZHENG Z, et al. Porous nerve guidance conduits reinforced with braided composite structures of silk/magnesium filaments for peripheral nerve repair[J/OL]. Acta Biomaterialia, 2021 [2021-09-05]. https://doi.org/10.1016/j.actbio.2021.07.02.
[25] XU T, DING Y C, WANG Z, et al. Three-dimensional and ultralight sponges with tunable conductivity assembled from electrospun nanofibers for a highly sensitive tactile pressure sensor[J]. Journal of Materials Chemistry C, 2017, 5(39): 10288-10294.
doi: 10.1039/C7TC03456C
[26] KIM S M, LEE M S, JEON J, et al. Biodegradable nerve guidance conduit with microporous and micropatterned poly(lactic-co-glycolic acid)-accelerated sciatic nerve regeneration[J]. Macromolecular Bioscience, 2018, 18(12): 1800290.
doi: 10.1002/mabi.v18.12
[1] JIANG Yulin, WANG Hui, ZHANG Keqin. Research progress of silk fibroin-based hydrogel bioinks for 3D bio-printing [J]. Journal of Textile Research, 2021, 42(11): 1-8.
[2] SUN Yusheng, ZUO Baoqi. Research progress of high-molecular polymer material for bone defect repair [J]. Journal of Textile Research, 2021, 42(08): 175-184.
[3] LIU Hao, LU Minglei, HUANG Xiaowei, WANG Na, WANG Xuefang, NING Xin, MING Jinfa. Preparation and characterization of silk fibroin hydrogel in acid-alcohol system [J]. Journal of Textile Research, 2021, 42(08): 41-48.
[4] DING Mengyao, DAI Mengnan, LI Meng, LIU Ping, XU Jingjing, WANG Jiannan. Separation and characterization of silk fibroin with different molecular weight [J]. Journal of Textile Research, 2021, 42(07): 46-53.
[5] YANG Ya, YAN Fengyi, WANG Hui, ZHANG Keqin. Protein adsorption and cell response on bio-interfaces of silk fibroin/octacalcium phosphate composites [J]. Journal of Textile Research, 2021, 42(02): 41-46.
[6] CAO Genyang, WANG Yunli, SHENG Dan, PAN Heng, XU Weilin. Promotion mechanism of color fastness to sublimation in thermovacuum environmental conditions for fibroin powder/pigment complex [J]. Journal of Textile Research, 2021, 42(02): 1-6.
[7] SONG Guangzhou, TU Fangfang, DING Mengyao, DAI Mengnan, YIN Yin, DONG Fenglin, WANG Jiannan. Negatively enhanced modification of silk fibroin and its load ability to calcitonin gene-related peptide [J]. Journal of Textile Research, 2020, 41(12): 7-12.
[8] WANG Shudong, MA Qian, WANG Ke, QU Caixin, QI Yu. Structure and biocompatibility of silk fibroin/gelatin blended hydrogels [J]. Journal of Textile Research, 2020, 41(11): 41-47.
[9] WANG Zongqian, YANG Haiwei, ZHOU Jian, LI Changlong. Effect of urea degumming on mechanical properties of silk fibroin aerogels [J]. Journal of Textile Research, 2020, 41(04): 9-14.
[10] SUN Guangdong, HUANG Yi, SHAO Jianzhong, FAN Qinguo. Blue light initiated photocrosslinking of silk fibroin hydrogel [J]. Journal of Textile Research, 2020, 41(04): 64-71.
[11] ZHONG Hongrong, FANG Yan, BAO Hong, WU Tingfang, ZHANG Xiaoning, XU Shui, ZHU Yong. Preparation and properties of silk fibroin based bilayer dressing materials [J]. Journal of Textile Research, 2020, 41(02): 13-19.
[12] ZHANG Zhibin, LI Gang, MAO Senxian, LI Xunxun, CHEN Yushuang, MAO Qingshan, LI Yi, PAN Zhijuan, WANG Xiaoqin. Preparation and antibacterial activity of silk fibroin/chitosan microspheres [J]. Journal of Textile Research, 2019, 40(10): 7-12.
[13] BAO Hong, XU Shui, ZHANG Xiaoning, CHENG Guotao, ZHU Yong. Cationization of Bombyx mori silk fibroin and effect there of on wool traits [J]. Journal of Textile Research, 2019, 40(07): 24-30.
[14] LIN Yongjia, YANG Dongchao, ZHANG Peihua, GU Yan. Preparation and properties of regenerated silk fibroin/acellular dermal matrix blended nanofiber membrane [J]. Journal of Textile Research, 2019, 40(07): 13-18.
[15] WANG Zongqian, WANG Dengfeng, ZHOU Hang, LI Jun. Effect of ultrasonic assistance on morphology of silk fibroin microspheres prepared by emulsion cross-linking process [J]. Journal of Textile Research, 2019, 40(02): 119-124.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] JI Changchun, ZHANG Kaiyuan, WANG Yudong, WANG Xinhou. Numerical calculation and analysis of three-dimensional flow field in melt-blown process[J]. Journal of Textile Research, 2019, 40(08): 175 -180 .
[2] SUN Guangwu, LI Jiecong, XIN Sanfa, WANG Xinhou. Diameter prediction of melt-blown fiber based on non-Newtonian fluid constitutive equations[J]. Journal of Textile Research, 2019, 40(11): 20 -25 .
[3] ZHEN Qi, ZHANG Heng, ZHU Feichao, SHI Jianhong, LIU Yong, ZHANG Yifeng. Fabrication and properties of polypropylene/polyester bicomponent micro-nanofiber webs via melt blowing process[J]. Journal of Textile Research, 2020, 41(02): 26 -32 .
[4] LI Huiqin, ZHANG Nan, WEN Xiaodan, GONG Jixian, ZHAO Xiaoming, WANG Zhishuai. Progress of noise reduction product based on fiber materials[J]. Journal of Textile Research, 2020, 41(03): 175 -181 .
[5] ZHANG Xing, LIU Jinxin, ZHANG Haifeng, WANG Yuxiao, JIN Xiangyu. Preparation technology and research status of nonwoven filtration materials for individual protective masks[J]. Journal of Textile Research, 2020, 41(03): 168 -174 .
[6] SUN Huanwei, ZHANG Heng, ZHEN Qi, ZHU Feichao, QIAN Xiaoming, CUI Jingqiang, ZHANG Yifeng. Filtrations of propylene-based micro-nano elastic filters via melt blowing process[J]. Journal of Textile Research, 2020, 41(10): 20 -28 .
[7] WANG Chunhong, LI Ming, LONG Bixuan, CAI Yingjie, WANG Lijian, ZUO Qi. Preparation and performance of polyvinyl alcohol/sodium alginate/berberine medical dressing[J]. Journal of Textile Research, 2021, 42(05): 16 -22 .
[8] WANG Yudong, JI Changchun, WANG Xinhou, GAO Xiaoping. Design and numerical analysis of new types of melt blowing slot-dies[J]. Journal of Textile Research, 2021, 42(07): 95 -100 .
[9] DING Mengyao, DAI Mengnan, LI Meng, LIU Ping, XU Jingjing, WANG Jiannan. Separation and characterization of silk fibroin with different molecular weight[J]. Journal of Textile Research, 2021, 42(07): 46 -53 .
[10] LIU Hao, LU Minglei, HUANG Xiaowei, WANG Na, WANG Xuefang, NING Xin, MING Jinfa. Preparation and characterization of silk fibroin hydrogel in acid-alcohol system[J]. Journal of Textile Research, 2021, 42(08): 41 -48 .